Skip to main content

Summary, Conclusions, and Perspectives

  • Chapter
  • First Online:
  • 786 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 927))

Abstract

In the present Lecture Notes a self-contained presentation of the fundamental concepts, theory, and computation of electronic transport was given, as adapted to open quantum billiard devices, for which the magnetotransport was then analyzed in dependence of the characteristics of the confining potential. Focusing on the interplay between the geometry of the setups and the effects of the magnetic field, it was investigated how special non-universal features in the transmission spectra arise which enable the efficient control of conductance by different underlying mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V.I. Borisov, V.G. Lapin, V.E. Sizov, A.G. Temiryazev, Transistor structures with controlled potential profile in one-dimensional quantum channel. Tech. Phys. Lett. 37 (2), 136 (2011)

    Google Scholar 

  2. S.S. Buchholz, S.F. Fischer, U. Kunze, D. Reuter, A.D. Wieck, Nonlocal Aharonov–Bohm conductance oscillations in an asymmetric quantum ring. Appl. Phys. Lett. 94 (2), 022107 (2009)

    Google Scholar 

  3. A. Fuhrer, S. Lüscher, T. Heinzel, K. Ensslin, W. Wegscheider, M. Bichler, Transport properties of quantum dots with steep walls. Phys. Rev. B 63 (12), 125309 (2001)

    Google Scholar 

  4. T. Heinzel, R. Held, S. Lüscher, K. Ensslin, W. Wegscheider, M. Bichler, Electronic properties of nanostructures defined in Ga[Al]As heterostructures by local oxidation. Phys. E 9 (1), 84 (2001)

    Google Scholar 

  5. P.S. Drouvelis, P. Schmelcher, F.K. Diakonos, Probing the shape of quantum dots with magnetic fields. Phys. Rev. B 69 (15), 155312 (2004)

    Google Scholar 

  6. D. Sánchez, L. Serra, Fano-Rashba effect in a quantum wire. Phys. Rev. B 74 (15), 153313 (2006)

    Google Scholar 

  7. O. Zaitsev, D. Frustaglia, K. Richter, Role of orbital dynamics in spin relaxation and weak antilocalization in quantum dots. Phys. Rev. Lett. 94 (2), 026809 (2005)

    Google Scholar 

  8. R. Fazio, R. Raimondi, Resonant Andreev tunneling in strongly interacting quantum dots. Phys. Rev. Lett. 80 (13), 2913 (1998)

    Google Scholar 

  9. N.G. Fytas, F.K. Diakonos, P. Schmelcher, M. Scheid, A. Lassl, K. Richter, G. Fagas, Magnetic-field dependence of transport in normal and Andreev billiards: a classical interpretation of the averaged quantum behavior. Phys. Rev. B 72 (8), 085336 (2005)

    Google Scholar 

  10. Q. Han, A method of studying the Bogoliubov–de Gennes equations for the superconducting vortex lattice state. J. Phys. Cond. Mat. 22 (3), 035702 (2010)

    Google Scholar 

  11. J.H. Bardarson, M. Titov, P.W. Brouwer, Electrostatic confinement of electrons in an integrable graphene quantum dot. Phys. Rev. Lett. 102 (22), 226803 (2009)

    Google Scholar 

  12. J. Güttinger, F. Molitor, C. Stampfer, S. Schnez, A. Jacobsen, S. Dröscher, T. Ihn, K. Ensslin, Transport through graphene quantum dots. Rep. Prog. Phys. 75 (12), 126502 (2012)

    Google Scholar 

  13. K. Kazymyrenko, X. Waintal, Knitting algorithm for calculating Green functions in quantum systems. Phys. Rev. B 77 (11), 115119 (2008)

    Google Scholar 

  14. A. Gómez-León, G. Platero, Floquet-Bloch theory and topology in periodically driven lattices. Phys. Rev. Lett. 110 (20), 200403 (2013)

    Google Scholar 

  15. S. Datta, Steady-state quantum kinetic equation. Phys. Rev. B 40 (8), 5830 (1989)

    Google Scholar 

  16. S. Datta, A simple kinetic equation for steady-state quantum transport. J. Phys. Condens. Matter 2 (40), 8023 (1990)

    Google Scholar 

  17. S. Datta, Nanoscale device modeling: the Green’s function method. Superlattice. Microst. 28 (4), 253 (2000)

    Google Scholar 

  18. R. Lake, S. Datta, Nonequilibrium Green’s-function method applied to double-barrier resonant-tunneling diodes. Phys. Rev. B 45 (12), 6670 (1992)

    Google Scholar 

  19. R. Lake, G. Klimeck, R.C. Bowen, D. Jovanovic, Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81 (12), 7845 (1997)

    Google Scholar 

  20. P. Földi, O. Kálmán, M.G. Benedict, F.M. Peeters, Networks of quantum nanorings: programmable spintronic devices. Nano Lett. 8 (8), 2556 (2008)

    Google Scholar 

  21. O. Kalman, P. Foldi, M.G. Benedict, F.M. Peeters, Magnetoconductance of rectangular arrays of quantum rings. Phys. Rev. B 78 (12), 125306 (2008)

    Google Scholar 

  22. P. Földi, V. Szaszkó-Bogár, F.M. Peeters, High-temperature conductance of a two-dimensional superlattice controlled by spin-orbit interaction. Phys. Rev. B 83 (11), 115313 (2011)

    Google Scholar 

  23. O. Vanbésien, D. Lippens, Directional coupling in dual-branch electron-waveguide junctions. Phys. Rev. B 52 (7), 5144 (1995)

    Google Scholar 

  24. Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, H. Shtrikman, An electronic Mach–Zehnder interferometer. Nature 422 (6930), 415 (2003)

    Google Scholar 

  25. Y. Xu, A.E. Miroshnichenko, Manipulation of the resonance interaction in Mach-Zehnder-Fano interferometers. Phys. Rev. A 84 (3), 033828 (2011)

    Google Scholar 

  26. P. Rotter, U. Rössler, H. Silberbauer, M. Suhrke, Antidot-superlattices: minibands and magnetotransport. Phys. B 212 (3), 231 (1995)

    Google Scholar 

  27. P.A. Kalozoumis, C. Morfonios, F.K. Diakonos, P. Schmelcher, Local symmetries in one-dimensional quantum scattering. Phys. Rev. A 87 (3), 032113 (2013)

    Google Scholar 

  28. P.A. Kalozoumis, C. Morfonios, N. Palaiodimopoulos, F.K. Diakonos, P. Schmelcher, Local symmetries and perfect transmission in aperiodic photonic multilayers. Phys. Rev. A 88 (3), 033857 (2013)

    Google Scholar 

  29. P.A. Kalozoumis, C. Morfonios, F.K. Diakonos, P. Schmelcher, Invariants of broken discrete symmetries. Phys. Rev. Lett. 113 (5), 050403 (2014)

    Google Scholar 

  30. C. Morfonios, P. Schmelcher, P.A. Kalozoumis, F.K. Diakonos, Local symmetry dynamics in one-dimensional aperiodic lattices: a numerical study. Nonlinear Dyn. 78 (1), 71 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morfonios, C.V., Schmelcher, P. (2017). Summary, Conclusions, and Perspectives. In: Control of Magnetotransport in Quantum Billiards. Lecture Notes in Physics, vol 927. Springer, Cham. https://doi.org/10.1007/978-3-319-39833-4_9

Download citation

Publish with us

Policies and ethics