Skip to main content

Directional Characteristics of Mammographic Spicules in the Complex Wavelet Domain

  • Conference paper
  • First Online:
Information Technologies in Medicine (ITiB 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 471))

Included in the following conference series:

  • 659 Accesses

Abstract

The subject of this paper is effective recognition of radiating spicules on digital mammograms. The presence of the spicules is the dominant symptom of neoplastic breast lesions called architectural distortions (ADs) or spiculated masses (SMs). The originality of the proposed method lies in the extraction of effective descriptors based on local directional activity of mammographic texture. Additionally, non-directional properties of mammographic findings were used in order to provide complete information about the discussed pathologies. The methodology applied was based on an analysis and constructive modeling of the conditioning of spicules distribution in the complex wavelet domain. The numerical descriptors of local tissue spiculation were calculated in the complex wavelet domain and, next, have been optimized and empirically verified. The experimental study was conducted on the basis of 2516 regions of interests, containing both normal (2091) and abnormal (415) breast tissue (clinically confirmed spiculated findings). Using the feature vector computed in the complex wavelet domain, the accuracy of spicules recognition (both in the case of ADs and SMs) reached over 83 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American College of Radiology, ACR Appropriateness Criteria for Breast Cancer Screening, pp. 1–6 (2012)

    Google Scholar 

  2. Anderson, R., Kingsbury, N., Fauqueur, J.: Multiscale object features from clustered complex wavelet coefficients. In: IEEE/SP 13th Workshop on Statistical Signal Processing, pp. 437–442 (2005)

    Google Scholar 

  3. Ball, J.E., Bruce, L.M.: Digital mammogram spiculated mass detection and spicule segmentation using level sets. In: Proceedings of the 19th Annual International Conference of the IEEE EMBS, pp. 4979–4984 (2007)

    Google Scholar 

  4. Banik, S., Rangayyan, R.M., Desautels, J.E.L.: Detection of architectural distortion in prior mammograms. IEEE Trans. Med. Imaging 30(2), 279–294 (2011)

    Article  Google Scholar 

  5. Berks, M., Taylor, C., Rahim, R., Boggis, C., Astley, S.: Modelling structural deformations in mammographic tissue using the dual-tree complex wavelet. LNCS 6136, 145–152 (2010)

    Google Scholar 

  6. Birdwell, R.L., Morris, E.A., Wang, S., Parkinson, B.T.: 100 rozpoznan. Sutek, MediPage (2005)

    Google Scholar 

  7. Broeders, M., Moss, S., Nystrom, L., Njor, S., Jonsson, H., Paap, E., Massat, N., Duffy, S., Lynge, E., Paci, E.: The impact of mammographic screening on breast cancer mortality in Europe: a review of observational studies. J. Med. Screen. 19(Suppl 1), 14–25 (2012)

    Article  Google Scholar 

  8. Chakraborty, J., Rangayyan, R.M., Banik, S., Mukhopadhyay, S., Desautels, J.E.L.: Statistical measures of orientation of texture for the detection of architectural distortion in prior mammograms of interval cancer. J. Electron. Imaging 21(3), 1–13 (2012)

    Article  Google Scholar 

  9. Dziukowa, J.: Mammografia w diagnostyce raka sutka. BEL CORP Scientific Publications, Warszawa (1998)

    Google Scholar 

  10. Ferrari, R.J., Rangayyan, R.M., Desautels, J.E.L., Frere, A.F.: Analysis of asymmetry in mammograms via directional filtering with Gabor wavelets. IEEE Trans. Med. Imaging 20(9), 953–964 (2001)

    Article  Google Scholar 

  11. Jasionowska, M., Przelaskowski, A.: Multiscale modeling of local directional mammogram findings. J. Med. Inf. Technol. 17, 183–190 (2011)

    Google Scholar 

  12. Jasionowska, M., Przelaskowski, A.: Subtle directional mammographic findings in multiscale domain. Inf. Technol. Biomed. LNCS 7339, 77–84 (2012)

    Article  Google Scholar 

  13. Jasionowska, M., Dobór deskryptorów, P.: według warstw proponowanego modelu spikul w mammogramach. XVIII Krajow Konferencja Biocybernetyki i Inżynierii Biomedycznej, Polska, pp. 118 (2013)

    Google Scholar 

  14. Jiang, H., Tiu, W., Yamamoto, S., Iisaku, S.: A method for automatic detection of spicules in mammograms. J. Comput. Aided Diagn. Med. Images 2, 23–31 (1998)

    Google Scholar 

  15. Karssemeijer, N., Te Brake, G.M.: Detection of stellate distortions in mammograms. IEEE Trans. Med. Imaging 15(5), 611–619 (1996)

    Article  Google Scholar 

  16. Kegelmeyer, W.P., Jr.: Evalution of stellate lesion detection in a standard mammogram data set. In: Bowyer, K.W., Astley, S. (eds.) State of the Art in Digital Mammographic Image Analysis, pp. 262–279. World Scientific (1993)

    Google Scholar 

  17. Kim, H.J., Kim, W.H.: Automatic detection of spiculated masses using fractal analysis in digital mammography. LNCS, vol. 3691, pp. 256–263. Springer, Berlin (2005)

    Google Scholar 

  18. Kobatake, H., Yoshinaga, Y., Detection of stellate distortion in mammograms. IEEE Trans. Med. Imaging, MI-15(3), 235–245 (1996)

    Google Scholar 

  19. Kolb, T.M., Lichy, J., Newhouse, J.H.: Comparison of the performance of screening mammography, physical examination and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology 225, 165–175 (2002)

    Article  Google Scholar 

  20. Nemoto, M., Honmura, S., Shimizu, A.: A pilot study of architectural distortion detection in mammograms based on characteristics of line shadows. Int. J. CARS 4, 27–36 (2009)

    Article  Google Scholar 

  21. Ozekes, S., Osman, O., Camurcu, A.Y.: Mammographic mass detection using a mass template. Korean J. Radiol. 6(3), 221–228 (2005)

    Article  Google Scholar 

  22. Rangayyan, R.M., Ayres, F.J.: Gabor filters and phase portraits for the detection of architectural distortion in mammograms. Med. Biol. Eng. Comput. 44(10), 883–894 (2006)

    Article  Google Scholar 

  23. Ragupathy, U.S., Saranya, T.: Gabor wavelet based detection of architectural distortion and mass in mammographic images and classification using adaptive neuro fuzzy inference system. Int. J. Comput. Appl. 46(22), 37–40 (2012)

    Google Scholar 

  24. Rashed, E.A., Ismail, I.A., Zaki, S.I.: Multiresolution mammogram analysis in multilevel decomposition. Pattern Recogn. Lett. 28, 286–292 (2007)

    Article  Google Scholar 

  25. Sampat, M.P., Markey, M.K., Bovik, A.C.: Computer-aided detection and diagnosis in mammography. In: Bovik, A.C. (ed.) Handbook of Image and Video Processing, 2nd edn, pp. 1195–1217. Academic, New York (2005)

    Google Scholar 

  26. Sampat, M.P., Markey, M.K., Bovik, A.C.: Measurement and detection of spiculated lesions. IEEE 5747, 105–109 (2006)

    Google Scholar 

  27. Sampat, M.P., Whitman, G.J., Markey, M.K., Bovik, A.C.: Evidence based detection of spiculated masses and architectural distortions. SPIE, Med. Imaging: Image Process. 5747, 26–37 (2005)

    Google Scholar 

  28. Selesnick, I.W., Baraniuk, G., Kingsbury, N.G.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6), 123–151 (2005)

    Article  Google Scholar 

  29. Shenk, V.U.B., Brady, M.: Finding CLS using multiresolution oriented local energy feature detection. In: Proceedings 6th International Workshop on Digital Mammography, pp. 64–68 (2002)

    Google Scholar 

  30. Wai, L.C.C., Mellor, M., Brady, M.: A multi-resolution CLS detection algorithm for mammographic image analysis. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) LNCS, vol. 3217, pp. 865–872. Springer, Berlin (2004)

    Google Scholar 

  31. Wong, A., Scharcanski, J.: SeniorPhase-adaptive superresolution of mammographic images using complex wavelets. IEEE Trans. Image Process. 18(5), 1140–1146 (2009)

    Google Scholar 

Download references

Acknowledgments

This publication was funded by the National Science Centre (Poland) based on the decision DEC-2011/03/B/ST7/03649.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Jasionowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jasionowska, M., Przelaskowski, A. (2016). Directional Characteristics of Mammographic Spicules in the Complex Wavelet Domain. In: Piętka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technologies in Medicine. ITiB 2016. Advances in Intelligent Systems and Computing, vol 471. Springer, Cham. https://doi.org/10.1007/978-3-319-39796-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39796-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39795-5

  • Online ISBN: 978-3-319-39796-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics