Skip to main content

Pediatric Brain: Normal Variations in Development, Maturation, and Myelination

  • Chapter
  • First Online:
Atlas of Normal Imaging Variations of the Brain, Skull, and Craniocervical Vasculature

Abstract

This chapter focuses on neonates, infants, adolescents, and to a lesser degree, teenagers. With the advent of 3T MRI, norms for development and maturation of white matter structures have changed and evolved somewhat. Though it is critical to note the appropriate signal intensities within myelinating and maturing structures in the neonate and within the first 2 years of life, the focus is largely on T2-weight imaging (T2WI) in infants and young children when assessing normal development; fluid-attenuated inversion recovery (FLAIR) is less useful. For example, in neonates, T1-bright signal within the basal ganglia can be a source of consternation and may or may not be abnormal, depending on location, degree, and signal intensity relative to adjacent structures. Additionally, in young children, juveniles, and adolescents, knowledge of normal terminal zones of myelination is necessary to distinguish normal maturation from true pathology. It is also important to mention that CT has been used with decreasing frequency in children (particularly neonates and infants) over the past 10 years, as the lifetime risk of developing malignancy due to the radiation dose increases with decreasing age. Although newer, lower-dose protocols that implement iterative reconstruction have improved the dose profile, it is important to be aware of the cumulative risk of CT over time to children, particularly those with neoplasm or malignancies, who are expected to undergo multiple future CT-based studies. Thus, MRI is increasingly becoming the method of initially diagnosing and following most chronic disorders or neoplasms in children, until positron emission tomography (PET)-MRI becomes routinely available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barkovich AJ. MR of the normal neonatal brain: assessment of deep structures. AJNR Am J Neuroradiol. 1998;19:1397–403.

    CAS  PubMed  Google Scholar 

  2. Barkovich AJ, Hajnal BL, Vigneron D, Sola A, Partridge JC, Allen F, Ferriero DM. Prediction of neuromotor outcome in perinatal asphyxia: evaluation of MR scoring systems. AJNR Am J Neuroradiol. 1998;19:143–9.

    CAS  PubMed  Google Scholar 

  3. Liauw L, Palm-Meinders IH, van der Grond J, Leijser LM, le Cessie S, Laan LA, et al. Differentiating normal myelination from hypoxic-ischemic encephalopathy on T1-weighted MR Images: a new approach. AJNR Am J Neuroradiol. 2007;28:660–5.

    CAS  PubMed  Google Scholar 

  4. Liauw L, van der Grond J, van den Berg-Huysmans AA, Laan LA, van Buchem MA, van Wezel-Meijler G. Is there a way to predict outcome in (near) term neonates with hypoxic-ischemic encephalopathy based on MR imaging? AJNR Am J Neuroradiol. 2008;29:1789–94.

    Article  CAS  PubMed  Google Scholar 

  5. Liauw L, van Wezel-Meijler G, Veen S, van Buchem MA, van der Grond J. Do apparent diffusion coefficient measurements predict outcome in children with neonatal hypoxic-ischemic encephalopathy? AJNR Am J Neuroradiol. 2009;30:264–70.

    Article  CAS  PubMed  Google Scholar 

  6. Barkovich AJ, Kjos BO, Jackson Jr DE, Norman D. Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology. 1988;166:173–80.

    Article  CAS  PubMed  Google Scholar 

  7. Barkovich AJ, Mukherjee P. Normal development of the neonatal and infant brain, skull, and spine. In: Barkovich AJ, Raybaud C, editors. Pediatric neuroimaging. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2012. p. 20–80.

    Google Scholar 

  8. Counsell SJ, Maalouf EF, Fletcher AM, Duggan P, Battin M, Lewis HJ, et al. MR imaging assessment of myelination in the very preterm brain. AJNR Am J Neuroradiol. 2002;23:872–81.

    PubMed  Google Scholar 

  9. Barkovich AJ, Hajnal BL, Vigneron D, Sola A, Partridge JC, Allen F, Ferriero DM. Prediction of neuromotor outcome in perinatal asphyxia: evaluation of MR scoring systems. AJNR Am J Neuroradiol. 1998;19:143–9.

    CAS  PubMed  Google Scholar 

  10. Taoka T, Aida N, Ochi T, Takahashi Y, Akashi T, Miyasaka T, et al. Transient hyperintensity in the subthalamic nucleus and globus pallidus of newborns on T1-weighted images. AJNR Am J Neuroradiol. 2011;32:1130–7.

    Article  CAS  PubMed  Google Scholar 

  11. Sarikaya B, McKinney AM, Spilseth B, Truwit CL. Comparison of spin-echo T1- and T2-weighted and gradient-echo T1-weighted images at 3T in evaluating very preterm neonates at term-equivalent age. AJNR Am J Neuroradiol. 2013;34:1098–103.

    Article  CAS  PubMed  Google Scholar 

  12. Tyan AE, McKinney AM, Hanson TJ, Truwit CL. Comparison of spin-echo and gradient-echo T1-weighted and spin-echo T2-weighted images at 3T in evaluating term-neonatal myelination. AJNR Am J Neuroradiol. 2015;36:411–6.

    Article  CAS  PubMed  Google Scholar 

  13. Robertson RL, Ben-Sira L, Barnes PD, Mulkern RV, Robson CD, Maier SE, et al. MR line-scan diffusion-weighted imaging of term neonates with perinatal brain ischemia. AJNR Am J Neuroradiol. 1999;20:1658–70.

    CAS  PubMed  Google Scholar 

  14. Forbes KP, Pipe JG, Bird R. Neonatal hypoxic-ischemic encephalopathy: detection with diffusion-weighted MR imaging. AJNR Am J Neuroradiol. 2000;21:1490–6.

    CAS  PubMed  Google Scholar 

  15. Cowan MF. Magnetic resonance imaging of the normal infant brain: term to 2 years. In: Rutherford MA, editor. MRI of the neonatal brain. 4th ed. Philadelphia: WB Saunders; 2001.

    Google Scholar 

  16. Holland BA, Haas DK, Norman D, Brant-Zawadzki M, Newton TH. MRI of normal brain maturation. AJNR Am J Neuroradiol. 1986;7:201–8.

    CAS  PubMed  Google Scholar 

  17. Brody BA, Kinney HC, Kloman AS, Gilles FH. Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol. 1987;46:283–301.

    Article  CAS  PubMed  Google Scholar 

  18. Kinney HC, Brody BA, Kloman AS, Gilles FH. Sequence of central nervous system myelination in human infancy: patterns of myelination in autopsied infants. J Neuropathol Exp Neurol. 1988;47:217–34.

    Article  CAS  PubMed  Google Scholar 

  19. Dietrich RB, Bradley WG, Zaragoza 4th EJ, Otto RJ, Taira RK, Wilson GH, Kangarloo H. MR evaluation of early myelination patterns in normal and developmentally delayed infants. AJR Am J Roentgenol. 1988;150:889–96.

    Article  CAS  PubMed  Google Scholar 

  20. Bird CR, Hedberg M, Drayer BP, Keller PJ, Flom RA, Hodak JA. MR assessment of myelination in infants and children: usefulness of marker sites. AJNR Am J Neuroradiol. 1989;10:731–40.

    CAS  PubMed  Google Scholar 

  21. Hayakawa K, Konishi Y, Kuriyama M, Konishi K, Matsuda T. Normal brain maturation in MRI. Eur J Radiol. 1991;12:208–15.

    Article  CAS  PubMed  Google Scholar 

  22. Staudt M, Schropp C, Staudt F, Obletter N, Bise K, Breit A, Weinmann HM. MRI assessment of myelination: an age standardization. Pediatr Radiol. 1994;24:122–7.

    Article  CAS  PubMed  Google Scholar 

  23. Parazzini C, Baldoli C, Scotti G, Triulzi F. Terminal zones of myelination: MR evaluation of children aged 20–40 months. AJNR Am J Neuroradiol. 2002;23:1669–73.

    PubMed  Google Scholar 

  24. Maricich SM, Azizi P, Jones JY, Morriss MC, Hunter JV, Smith EO, Miller G. Myelination as assessed by conventional MR imaging is normal in young children with idiopathic developmental delay. AJNR Am J Neuroradiol. 2007;28:1602–5.

    Article  CAS  PubMed  Google Scholar 

Suggested Reading

  • Asa SL, Kovacs K, Laszlo FA, Domokos I, Ezrin C. Human fetal adenohypophysis. Histologic and immunocytochemical analysis. Neuroendocrinology. 1986;43:308–16.

    Article  CAS  PubMed  Google Scholar 

  • Ashikaga R, Araki Y, Ono Y, Nishimura Y, Ishida O. Appearance of normal brain maturation on fluid-attenuated inversion-recovery (FLAIR) MR images. AJNR Am J Neuroradiol. 1999;20:427–31.

    CAS  PubMed  Google Scholar 

  • Bartha AI, Yap KR, Miller SP, Jeremy RJ, Nishimoto M, Vigneron DB, et al. The normal neonatal brain: MR imaging, diffusion tensor imaging, and 3D MR spectroscopy in healthy term neonates. AJNR Am J Neuroradiol. 2007;28:1015–21.

    Article  CAS  PubMed  Google Scholar 

  • Battin MR, Maalouf EF, Counsell SJ, Herlihy AH, Rutherford MA, Azzopardi D, Edwards AD. Magnetic resonance imaging of the brain in very preterm infants: visualization of the germinal matrix, early myelination, and cortical folding. Pediatrics. 1998;101:957–62.

    Article  CAS  PubMed  Google Scholar 

  • Castillo M. Pituitary gland: development, normal appearances, and magnetic resonance imaging protocols. Top Magn Reson Imaging. 2005;16:259–68.

    Article  PubMed  Google Scholar 

  • Chau V, Poskitt KJ, Sargent MA, Lupton BA, Hill A, Roland E, Miller SP. Comparison of computer tomography and magnetic resonance imaging scans on the third day of life in term newborns with neonatal encephalopathy. Pediatrics. 2009;123:319–26.

    Article  PubMed  Google Scholar 

  • Cox TD, Elster AD. Normal pituitary gland: changes in shape, size, and signal intensity during the 1st year of life at MR imaging. Radiology. 1991;179:721–4.

    Article  CAS  PubMed  Google Scholar 

  • Dietrich RB, Lis LE, Greensite FS, Pitt D. Normal MR appearance of the pituitary gland in the first 2 years of life. AJNR Am J Neuroradiol. 1995;16:1413–9.

    CAS  PubMed  Google Scholar 

  • Felderhoff-Mueser U, Rutherford MA, Squier WV, Cox P, Maalouf EF, Counsell SJ, et al. Relationship between MR imaging and histopathologic findings of the brain in extremely sick preterm infants. AJNR Am J Neuroradiol. 1999;20:1349–57.

    CAS  PubMed  Google Scholar 

  • Girard N, Raybaud C, Poncet M. In vivo MR study of brain maturation in normal fetuses. AJNR Am J Neuroradiol. 1995;16:407–13.

    CAS  PubMed  Google Scholar 

  • Heinz ER, Provenzale JM. Imaging findings in neonatal hypoxia: a practical review. AJR Am J Roentgenol. 2009;192:41–7.

    Article  PubMed  Google Scholar 

  • Kitamura E, Miki Y, Kawai M, Itoh H, Yura S, Mori N, et al. T1 signal intensity and height of the anterior pituitary in neonates: correlation with postnatal time. AJNR Am J Neuroradiol. 2008;29:1257–60.

    Article  CAS  PubMed  Google Scholar 

  • Liauw L, Palm-Meinders IH, van der Grond J, Leijser LM, le Cessie S, Laan LA, et al. Differentiating normal myelination from hypoxic-ischemic encephalopathy on T1-weighted MR Images: a new approach. AJNR Am J Neuroradiol. 2007;28:660–5.

    CAS  PubMed  Google Scholar 

  • Liauw L, van der Grond J, van den Berg-Huysmans AA, Laan LA, van Buchem MA, van Wezel-Meijler G. Is there a way to predict outcome in (near) term neonates with hypoxic-ischemic encephalopathy based on MR imaging? AJNR Am J Neuroradiol. 2008;29:1789–94.

    Article  CAS  PubMed  Google Scholar 

  • Maalouf EF, Duggan PJ, Rutherford MA, Counsell SJ, Fletcher AM, Battin M, et al. Magnetic resonance imaging of the brain in a cohort of extremely preterm infants. J Pediatr. 1999;135:351–7.

    Article  CAS  PubMed  Google Scholar 

  • Miller JH, McKinstry RC, Philip JV, Mukherjee P, Neil JJ. Diffusion-tensor MR imaging of normal brain maturation: a guide to structural development and myelination. AJR Am J Roentgenol. 2003;180:851–9.

    Article  PubMed  Google Scholar 

  • Murakami JW, Weinberger E, Shaw DW. Normal myelination of the pediatric brain imaged with fluid-attenuated inversion-recovery (FLAIR) MR imaging. AJNR Am J Neuroradiol. 1999;20:1406–11.

    CAS  PubMed  Google Scholar 

  • Nelson MD, Jr. Session III: Neuroimaging of perinatal asphyxia in term infants. In: Acute perinatal asphyxia in term infants: report of the workshop. National Institutes of Health and National Institute of Child Health and Human Development. Philadelphia: Diane Publishing; 1997. p. 110–3.

    Google Scholar 

  • Robertson RL, Robson CD, Zurakowski D, Antiles S, Strauss K, Mulkern RV. CT versus MR in neonatal brain imaging at term. Pediatr Radiol. 2003;33:442–9.

    Article  PubMed  Google Scholar 

  • Rutherford MA. The asphyxiated term infant. In: Rutherford MA, editor. MRI of the neonatal brain. 4th ed. Philadelphia: WB Saunders; 2001.

    Google Scholar 

  • Rutherford MA, Pennock JM, Schwieso JE, Cowan FM, Dubowitz LM. Hypoxic ischaemic encephalopathy: early magnetic resonance imaging findings and their evolution. Neuropediatrics. 1995;26:183–91.

    Article  CAS  PubMed  Google Scholar 

  • van Wezel-Meijler G, van der Knaap MS, Sie LT, Oosting J, van Amerongen AH, Cranendonk A, Lafeber HN. Magnetic resonance imaging of the brain in premature infants during the neonatal period. Normal phenomena and reflection of mild ultrasound abnormalities. Neuropediatrics. 1998;29:89–96.

    Article  PubMed  Google Scholar 

  • Wattjes MP, Lutterbey GG, Gieseke J, Träber F, Klotz L, Schmidt S, Schild HH. Double inversion recovery brain imaging at 3T: diagnostic value in the detection of multiple sclerosis lesions. AJNR Am J Neuroradiol. 2007;28:54–9.

    Article  CAS  PubMed  Google Scholar 

  • Wolpert SM, Osborne M, Anderson M, Runge VM. The bright pituitary gland – a normal MR appearance in infancy. AJNR Am J Neuroradiol. 1988;9:1–3.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McKinney, A.M. (2017). Pediatric Brain: Normal Variations in Development, Maturation, and Myelination. In: Atlas of Normal Imaging Variations of the Brain, Skull, and Craniocervical Vasculature . Springer, Cham. https://doi.org/10.1007/978-3-319-39790-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39790-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39789-4

  • Online ISBN: 978-3-319-39790-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics