Advertisement

Context-Aware Analysis of Past Process Executions to Aid Resource Allocation Decisions

  • Renuka SindhgattaEmail author
  • Aditya Ghose
  • Hoa Khanh Dam
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9694)

Abstract

The allocation of resources to process tasks can have a significant impact on the performance (such as cost, time) of those tasks, and hence of the overall process. Past resource allocation decisions, when correlated with process execution histories annotated with quality of service (or performance) measures, can be a rich source of knowledge about the best resource allocation decisions. The optimality of resource allocation decisions is not determined by the process instance alone, but also by the context in which these instances are executed. This phenomenon turns out to be even more compelling when the resources in question are human resources. Human workers with same the organizational role and capabilities can have heterogeneous behaviors based on their operational context. In this work, we propose an approach to supporting resource allocation decisions by extracting information about the process context and process performance from past process executions. The information extracted is analyzed using exploratory data mining techniques to discover resource allocation decisions. The knowledge thus acquired can be used to guide resource allocations in new process instances. Experiments performed on synthetic and real-world execution logs demonstrate the effectiveness of the proposed approach.

Keywords

Resource allocation Context-aware Data-driven analysis Process execution logs 

References

  1. 1.
    de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general framework for correlating business process characteristics. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 250–266. Springer, Heidelberg (2014)Google Scholar
  2. 2.
    Fraley, C., Raftery, A.E.: How many clusters? which clustering method? answers via model-based cluster analysis. Comput. J. 41, 578–588 (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ghattas, J., Peleg, M., Soffer, P., Denekamp, Y.: Learning the context of a clinical process. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 545–556. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Ghattas, J., Soffer, P., Peleg, M.: A formal model for process context learning. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 140–157. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Ghattas, J., Soffer, P., Peleg, M.: Improving business process decision making based on past experience. Decis. Support Syst. 59, 93–107 (2014)CrossRefGoogle Scholar
  6. 6.
    Hall, P., Park, B.U., Samworth, R.J.: Choice of neighbor order in nearest-neighbor classification. Ann. Statist. 36(5), 2135–2152 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Huang, Z., Xudong, L., Duan, H.: Resource behavior measure and application in business process management. Expert Syst. Appl. 39(7), 6458–6468 (2012)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Kabicher-Fuchs, S., Mangler, J., Rinderle-Ma, S.: Experience breeding in process-aware information systems. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 594–609. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Kabicher-Fuchs, S., Rinderle-Ma, S.: Work experience in PAIS – concepts, measurements and potentials. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 678–694. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Kumar, A., Dijkman, R., Song, M.: Optimal resource assignment in workflows for maximizing cooperation. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 235–250. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Kumar, A., van der Aalst, W.M.P., Verbeek, E.M.W.: Dynamic work distribution in workflow management systems: how to balance quality and performance. J. Manage. Inf. Syst. 18(3), 157–194 (2002)Google Scholar
  13. 13.
    Nakatumba, J., van der Aalst, W.M.P.: Analyzing resource behavior using process mining. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 69–80. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Pika, A., Wynn, M.T., Fidge, C.J., ter Hofstede, A.H.M., Leyer, M., van der Aalst, W.M.P.: An extensible framework for analysing resource behaviour using event logs. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 564–579. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Press, L.I., Rogers, M.S., Gerald, H.: An interactive technique for the analysis of multivariate data. Behav. Sci. 14(5), 364–370 (1969)CrossRefGoogle Scholar
  16. 16.
    Rosemann, M., Recker, J.: Context-aware process design exploring the extrinsic drivers for process flexibility. In: Proceedings of the CAISE*06 Workshop on Business Process Modelling, Development, and Support BPMDS 2006, Luxemburg, 5–9 June 2006Google Scholar
  17. 17.
    Saidani, O., Nurcan, S.: Context-awareness for adequate business process modelling. In: Proceedings of the Third IEEE International Conference on Research Challenges in Information Science, RCIS 2009, Fès, Morocco, pp. 177–186, 22–24 April 2009Google Scholar
  18. 18.
    Saidani, O., Rolland, C., Nurcan, S.: Towards a generic context model for BPM. In: 48th Hawaii International Conference on System Sciences, HICSS 2015, Kauai, Hawaii, USA, 5–8 January 2015, pp. 4120–4129 (2015)Google Scholar
  19. 19.
    Schonenberg, H., Weber, B., van Dongen, B.F., van der Aalst, W.M.P.: Supporting flexible processes through recommendations based on history. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)CrossRefGoogle Scholar
  21. 21.
    van Dongen, B.F., Weber, B., Ferreira, D.R., De Weerdt, J.: Report: business process intelligence challenge 2013. In: Business Process Management Workshops - BPM 2013 International Workshops, Beijing, China, 26 August, 2013, Revised Papers, pp. 79–87 (2013)Google Scholar
  22. 22.
    Vanderfeesten, I., Grefen, P.: Advanced dynamic role resolution in business processes. In: Persson, A., Stirna, J. (eds.) CAiSE 2015 Workshops. LNBIP, vol. 215, pp. 87–93. Springer, Heidelberg (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Renuka Sindhgatta
    • 1
    Email author
  • Aditya Ghose
    • 2
  • Hoa Khanh Dam
    • 2
  1. 1.IBM Research-IndiaBangaloreIndia
  2. 2.Decision Systems Lab, School of Computing and Information TechnologyUniversity of WollongongWollongongAustralia

Personalised recommendations