Advertisement

Social Business Intelligence in Action

  • Matteo Francia
  • Enrico Gallinucci
  • Matteo Golfarelli
  • Stefano RizziEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9694)

Abstract

Social Business Intelligence (SBI) relies on user-generated content to let decision-makers analyze their business in the light of the environmental trends. SBI projects come in a variety of shapes, with different demands. Hence, finding the right cost-benefit compromise depending on the project goals and time horizon and on the available resources may be hard for the designer. In this paper we discuss the main factors that impact this compromise aimed at providing a guideline to the design team. First we list the main architectural options and their methodological impact. Then we discuss a case study focused on an SBI project in the area of politics, aimed at assessing the effectiveness and efficiency of these options and their methodological sustainability.

Keywords

Social Business Intelligence User-generated content OLAP 

References

  1. 1.
    Dayal, U., Gupta, C., Castellanos, M., Wang, S., Garcia-Solaco, M.: Of cubes, DAGs and hierarchical correlations: a novel conceptual model for analyzing social media data. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012 Main Conference 2012. LNCS, vol. 7532, pp. 30–49. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Francia, M., Golfarelli, M., Rizzi, S.: A methodology for social BI. In: Proceedings of IDEAS, Porto, Portugal, pp. 207–216 (2014)Google Scholar
  3. 3.
    Furche, T., Gottlob, G., Grasso, G., Schallhart, C., Sellers, A.J.: OXPath: a language for scalable data extraction, automation, and crawling on the deep web. VLDB J. 22(1), 47–72 (2013)CrossRefGoogle Scholar
  4. 4.
    Gallinucci, E., Golfarelli, M., Rizzi, S.: Advanced topic modeling for social business intelligence. Inf. Syst. 53, 87–106 (2015)CrossRefGoogle Scholar
  5. 5.
    Gao, W., Li, P., Darwish, K.: Joint topic modeling for event summarization across news and social media streams. In: Proceedings of CIKM, Maui, HI, pp. 1173–1182 (2012)Google Scholar
  6. 6.
    García-Moya, L., Kudama, S., Aramburu, M.J., Llavori, R.B.: Storing and analysing voice of the market data in the corporate data warehouse. Inf. Syst. Front. 15(3), 331–349 (2013)CrossRefGoogle Scholar
  7. 7.
    Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of SIGKDD, Seattle, WA, pp. 168–177 (2004)Google Scholar
  8. 8.
    Kahan, J., Koivunen, M.R.: Annotea: an open RDF infrastructure for shared web annotations. In: Proceedings of WWW, Hong Kong, China, pp. 623–632 (2001)Google Scholar
  9. 9.
    Lee, J., Grossman, D.A., Frieder, O., McCabe, M.C.: Integrating structured data and text: a multi-dimensional approach. In: Proceedings of ITCC, Las Vegas, USA, pp. 264–271 (2000)Google Scholar
  10. 10.
    Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Aggarwal, C., Zhai, C. (eds.) Mining Text Data, pp. 415–463. Springer, New York (2012)CrossRefGoogle Scholar
  11. 11.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? sentiment classification using machine learning techniques. CoRR cs.CL/0205070 (2002)Google Scholar
  12. 12.
    Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Top_Keyword: an aggregation function for textual document OLAP. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 55–64. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Rehman, N.U., Mansmann, S., Weiler, A., Scholl, M.H.: Building a data warehouse for Twitter stream exploration. In: Proceedings of ASONAM, Istanbul, Turkey, pp. 1341–1348 (2012)Google Scholar
  14. 14.
    Ritter, A., Clark, S., Mausam, E., O.: Named entity recognition in tweets: an experimental study. In: Proceedings of EMNLP, Edinburgh, UK, pp. 1524–1534 (2011)Google Scholar
  15. 15.
    Rosenfeld, B., Feldman, R.: Clustering for unsupervised relation identification. In: Proceedings of CIKM, Lisbon, Portugal, pp. 411–418 (2007)Google Scholar
  16. 16.
    Stavrakantonakis, I., Gagiu, A.E., Kasper, H., Toma, I., Thalhammer, A.: An approach for evaluation of social media monitoring tools. Common Value Manag. 52, 52–64 (2012)Google Scholar
  17. 17.
    Wang, X., McCallum, A., Wei, X.: Topical n-grams: phrase and topic discovery, with an application to information retrieval. In: Proceedings of ICDM, Washington, DC, USA, pp. 697–702 (2007)Google Scholar
  18. 18.
    Yi, J., Nasukawa, T., Bunescu, R.C., Niblack, W.: Sentiment analyzer: extracting sentiments about a given topic using natural language processing techniques. In: Proceedings of ICDM, Melbourne, Florida, pp. 427–434 (2003)Google Scholar
  19. 19.
    Yi, L., Liu, B.: Web page cleaning for web mining through feature weighting. In: Proceedings of IJCAI, Acapulco, Mexico, vol. 3, pp. 43–50 (2003)Google Scholar
  20. 20.
    Yi, L., Liu, B., Li, X.: Eliminating noisy information in web pages for data mining. In: Proceedings of KDD, Washington DC, USA, pp. 296–305 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Matteo Francia
    • 1
  • Enrico Gallinucci
    • 1
  • Matteo Golfarelli
    • 1
  • Stefano Rizzi
    • 1
    Email author
  1. 1.DISIUniversity of BolognaBolognaItaly

Personalised recommendations