Advertisement

Tijuana’s Sustainability for Healthcare Measurement Using Fuzzy Systems

  • Bogart Yail MárquezEmail author
  • Arnulfo Alamis
  • Jose Sergio Magdaleno-Palencia
  • Karina Romo
  • Felma González
  • Sergio Mendez-Mota
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 60)

Abstract

The proposed methodology is focus as an alternative to analyze and describe the most accurate social phenomena according our reality using different computational mathematical theories, which are not used conventionally in social sciences applications and this is a new approach to create new computer’s simulation architectures.

Keywords

Fuzzy logic Natural phenomena Data mining Sustainable development 

References

  1. 1.
    Bar-yam, Y.: Dynamics of Complex Systems. Addison-Wesley, Reading (1992)zbMATHGoogle Scholar
  2. 2.
    Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-agent Systems with JADE. John Wiley & Sons Ltd., West Sussex (2007)CrossRefGoogle Scholar
  3. 3.
    Berne, E.: The Structure and Dynamics of Organizations and Groups. Freemantle Publishing, Beaconsfield (2001)Google Scholar
  4. 4.
    Byrne, D., Callaghan, G.: Complexity Theory and the Social Sciences: The State of the Art. Taylor and Francis (2013)Google Scholar
  5. 5.
    Coulhon, T., Mongin, P.: Social choice theory in the case of von Neumann-Morgenstern utilities. Soc. Choice Welfare 6(3), 175–187 (1989)Google Scholar
  6. 6.
    Evans, D., Leao, S., Bishop, I.: Simulating urban growth in a developing nation’s region using a cellular automata-based model. J. Urban Plann. Dev. © ASCE/Sept. 2004. doi: 10.1061/~ASCE!0733-9488~2004!130:3~145! (2004)
  7. 7.
    Geanakoplos, J., Karatzas, I., Shubik, M., Sudderth, W.: Inflationary Equilibrium in a Stochastic Economy with Independent Agents (2009)Google Scholar
  8. 8.
    Glaeser, E., Gyourko, J., Saks, R.: Urban growth and housing supply. J. Econ. Geogr. 6, 71–89 (2005)CrossRefGoogle Scholar
  9. 9.
    Herrera, L.A., Pineda Jaimes, S.: Ciudad Juárez: Las sociedades de riesgo en la Frontera Norte de México. FERMENTUM Revista Venezolana de Sociología y antropología 17, 422 (2007)Google Scholar
  10. 10.
    INEGI.: Instituto Nacional de Estadística y Geografía (2010)Google Scholar
  11. 11.
    Márquez, B., Castanon-Puga, M., Suarez, E.D., Magdaleno-Palencia, J.: Modeling the employment using distributed agencies and data mining. In: Zhu, M. (ed.) Electrical Engineering and Control, vol. 98, pp. 933–940. Springer, Berlin (2011)Google Scholar
  12. 12.
    Mendoza, J.E.: El mercado laboral en la frontera norte de México: estructuras y políticas de empleo. Estudios Fronterizos 11(21) (2010)Google Scholar
  13. 13.
    Morgenstern, O.: The collaboration between oskar morgenstern and John von Neumann on the theory of games. J. Econ. Lit. 14(3), 805–816 (1976)Google Scholar
  14. 14.
    Phan, D., Varenne, F.: Agent-based models and simulations in economics and social sciences: from conceptual exploration to distinct ways of experimenting. J. Artif. Soc. Soc. Simul. 13(1), 5 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Bogart Yail Márquez
    • 1
    Email author
  • Arnulfo Alamis
    • 1
  • Jose Sergio Magdaleno-Palencia
    • 1
  • Karina Romo
    • 1
  • Felma González
    • 1
  • Sergio Mendez-Mota
    • 1
  1. 1.Baja California Autonomous UniversityTijuanaMexico

Personalised recommendations