Method of Infrared Thermography for Earlier Diagnostics of Gastric Colorectal and Cervical Cancer

  • B. Dekel
  • A. Zilberman
  • N. BlaunsteinEmail author
  • Y. Cohen
  • M. B. Sergeev
  • L. L. Varlamova
  • G. S. Polishchuk
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 60)


In this work we present a novel non-invasive method and the corresponding devices to diagnose ansinternal anomality, that is, various kinds of intrinsic cancer, in a living subject by sending a passively occurring middle-infrared (MIR) radiation signal associated with the abnormality and inside an orifice of the Diagnostics includes detection and identification of the abnormality. A device or instrument is used either to bring a sensor into the orifice (in vivo diagnosis) or to transmit the MIR signal to the device or instrument located outside of the orifice (in vitro diagnosis). The example of instrument includes a prior art endoscope or gastroscope. The corresponding test results are presented as a proof of the proposed methodology of earlier diagnostics of internal cancerous structures.


Non-invasive method Infrared thermography Earlier diagnostics Gastric colorectal Cervical cancer 


  1. 1.
    Sugano, K., Sato, K., Yao, K.: New diagnostic approaches for early detection of gastric cancer. Digest. Dis. 22(4), 327–333 (2004)Google Scholar
  2. 2.
    Bender, G.N., Makuch, R.S.: Double-contrast barium examination of the upper gastrointestinal tract with non-endoscopic biopsy: findings in 100 patients. Radiology 202(2), 355–359 (1997)Google Scholar
  3. 3.
    Messmann, H., Schlottmann, K.: Role of endoscopy in the staging of esophageal and gastric cancer. In: Seminars in Surgical Oncology, vol. 20, no. 2, pp. 78–81 (2001)Google Scholar
  4. 4.
    Bhadari, S., Shim, C.S., Kim, J.H. et al.: Usefulness of three-dimensional, multidetector row CT (virtual gastroscopy and multiplanar reconstruction) in the evaluation of gastric cancer: a comparison with conventional endoscopy, EUS, and histopatalogy. In: Gastrointestinal Endoscopy, vol. 59, no. 6, pp. 619–626 (2004)Google Scholar
  5. 5.
    Yoshioka, T., Yamaguchi, K., Kubota, K. et al.: Evaluation of 18F-FDG PET in patients with a metastatic, or recurrent gastric cancer. J. Nucl. Med. 44(5), 690–699 (2003)Google Scholar
  6. 6.
    Motohara, T., Semelka, R.C.: MRI in staging of gastric cancer. Abdomin. Imaging 27(4), 376–383 (2002)Google Scholar
  7. 7.
    Mayinger, B., Jordan, M., Horbach, T. et al.: Evaluation of in vivo endoscopic autofluorescence spectroscopy in gastric cancer. Gastrointest. Endosc. 59(2), 191–198 (2004)Google Scholar
  8. 8.
    Shike, M., Winawer, S.J., Greenwald, P.H. et al.: Primary prevention of colorectal cancer. The WHO collaborating center for the prevention of colorectal cancer. In: Bull World Health Organ, vol. 68, no. 3, pp. 377–385 (1990)Google Scholar
  9. 9.
    Judith, M., Walsh, E., Terdiman, J.P.: Colorectal cancer screening: scientific review. JAMA 289(2003), 1288–1296 (2003)Google Scholar
  10. 10.
    Imperiale, T.F., Wagner, D.R., Lin, C.Y. et al.: Risk of advanced proximal neoplasms in asymptomatic adults according to the distal colorectal findings. New Engl. J. Med. 343(3), 169–174 (2000)Google Scholar
  11. 11.
    Ferrucci, J.T.: Colon cancer screening with virtual colonoscopy: promise, polyps, politics. AJR Am. J. Roentgenol 177(5), 975–988 (2001)Google Scholar
  12. 12.
    Traverso, G., Shuber, A., Olsson, L. et al.: Detection of proximal colorectal cancers through analysis of faucal DNA. Lancet 359(9304), 403–404 (2002)Google Scholar
  13. 13.
    Winawer, S.J., Stewart, E.T., Zauber, A.G. et al.: A comparison of colonoscopy and double-contrast barium enema for surveillance after polypectomy. National Polyp Study Work Group. New Engl. J. Med. 342(24), 1766–1772 (2000)Google Scholar
  14. 14.
    Dekel, B.Z., Blaunstein, N., Zilberman, A.: Method of Infrared thermography for earlier diagnosis of gastric colorectal and cervical cancer. US Patent: US 8,774,902 B2, July 2014, 11 pages (2014)Google Scholar
  15. 15.
    Gniadesca, M., Wulf, H.C., Nymark, N., et al.: Diagnosis of basal cell carcinoma by Roman spectroscopy. J. Roman Spectrosc. 28(1997), 125–129 (1997)Google Scholar
  16. 16.
    Brooks, A., Afanasyeva, N.I., Makchine, V., et al.: New method of investigations of normal human skin surfaces in vivo using fiber-optic evanescent wave Fourier Transform infrared spectroscopy (FEW-FTIR). J. Surf. Interf. Anal. 27(1999), 221–229 (1999)CrossRefGoogle Scholar
  17. 17.
    Yang, Y., Sule-Suso, J., Sockalingum, G.D. et al.: Study of tumor cell invasion be Fourier Transform infrared microspectroscopy. In: J. Biopolimers 78, 311–317 (2005)Google Scholar
  18. 18.
    Fujioka, N., Morimoto, Yu., Arai, T., et al.: Discrimination between normal and malignant human gastric tissues by Fourier transform infrared spectroscopy. J. Cancer Detect. Prevent. 28(2004), 32–36 (2004)CrossRefGoogle Scholar
  19. 19.
    Wang, H.P., Wang, H.C., Huang, Y.J.: Microscopic FTIR studies of lung cancer cells in pleural fluid. J. Sci. Total Environ. 204, 283–287 (1997)Google Scholar
  20. 20.
    Christodoulou, S., Chrysohoon, Ch., Panagiotakos, D.B., et al.: Temperature differences are associated with malignancy on lung lesions: a clinical study. Bio Med. Central 2003, 1–5 (2003)Google Scholar
  21. 21.
    Christodoulou, S., Paeskevas, E., Panagiotakos, D.B., et al.: Thermal heterogeneity constitutes a marker for the detection of malignant gastric lesions in vivo. J. Clin. Gastroenterol. 2003, 215–218 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • B. Dekel
    • 1
  • A. Zilberman
    • 2
  • N. Blaunstein
    • 1
    Email author
  • Y. Cohen
    • 2
  • M. B. Sergeev
    • 3
  • L. L. Varlamova
    • 4
  • G. S. Polishchuk
    • 4
  1. 1.Scientific Center “Ruppin”NetaniaIsrael
  2. 2.PIMS Co.Beer ShevaIsrael
  3. 3.ITMO UniversitySaint-PetersburgRussia
  4. 4.LOMOSaint-PetersburgRussia

Personalised recommendations