Advertisement

Hygehos Ontology for Electronic Health Records

  • Naiara MuroEmail author
  • Eider Sanchez
  • Manuel Graña
  • Eduardo Carrasco
  • Fran Manzano
  • Jose María Susperregi
  • Agustin Agirre
  • Jesús Gómez
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 60)

Abstract

During the last years a high effort on standardization of Electronic Health Records has been made. Standards ISO EN 13606 and OpenEHR with their dual approach have promoted semantic interoperability in the real clinical practice. Recently, the focus has been set on the extraction of knowledge from the clinical information stored in EHR, but current approaches based on archetypes do not provide a complete solution regarding content structuration limitation. In this paper we propose an ontology for Hygehos Electronic Health Records (EHR), that we call the Hygehos Ontology. The introduction of such ontology on the EHR system will facilitate the development of reasoning and knowledge extraction tools over the stored clinical information. In our approach, we first align the Hygehos EHR to the dual model of OpenEHR and generate the corresponding archetypes for every part of the system. Secondly, we formalize a methodology for structuring the clinical contents of Hygehos EHR into the Hygehos Ontology.

Keywords

EHR ADL archetype OWL ontology Hygehos 

Notes

Acknowledgments

This research was partially funded by the Basque Business Development Agency (SPRI), dependent on the Basque Government, under the grant GAITEK2015-SemanHis.

References

  1. 1.
    Bellazi, R., Diomidous, M., Sarkar, I.N., Takabayashi, K., Ziegler, A., McCray, A.T.: Data analysis and data mining: current issues in biomedical informatics. Methods Inf. Med. 50, 536–544 (2011)CrossRefGoogle Scholar
  2. 2.
    Jha, A.K., DesRoches, C.M., Campbell, E.G., Donelan, K., Rao, S.R., Ferris, T.G., Shields, A., Rosenbaum, S., Blumenthal, D.: Use of electronic health records in U.S. hospitals. N. Eng. J. Med. 360(16), 1628–1638 (2009)CrossRefGoogle Scholar
  3. 3.
    Wollersheim, D., Anny, S., Wenny, R.: Archetype-based electronic health records: a literature review and evaluation of their applicability of health data interoperability and access. Health Inform. Manage. J. 38(2), 7–17 (2009)CrossRefGoogle Scholar
  4. 4.
    Iqbal, A.M., Shepherd, M., Abibi S.S.R.: An ontology-based electronic medical record for chronic disease management. In: 44th Hawaii International Conference on System Science (HICSS) (2011)Google Scholar
  5. 5.
    Pathak, J., Kiefer, R.C., Chute, C.G.: Using semantic web technologies for cohort identification from electronic health records for clinical research. AMIA JT Summits Transl Sci Proc. pp. 10–19 (2012)Google Scholar
  6. 6.
    Lezcano, L., Sicilia, M.A., Rodríguez-Solano, C.: Integrating reasoning and clinical archetypes using OWL ontologies and SWRL rules. J. Biomed. Inform. 44(2), 343–353 (2010)CrossRefGoogle Scholar
  7. 7.
    Carrasco, E., Sanchez, E., Artetxe, A., Toro, C., Graña, M., Guijarro, F., Susperregui, J.M., Aguirre, A.: Hygehos home: an innovative remote follow-up system for chronic patients. In: Studies in Health Technology and Informatics: Innovation in Medicine and Healthcare 2014, vol. 207, pp. 261–270, IOS Press (2014)Google Scholar
  8. 8.
    Gruber, T.: What is an Ontology (1993). http://www-ksl.stanford.edu/kst/whatis-an-ontology.html. Accessed 07 Sept 2004
  9. 9.
    Martinez-Costa, C., Menarguez-Tortosa, M., Fernandez-Breis, J.T., Maldonado, J.A.: A model-driven approach for representing clinical archetypes for semantic web enviroments. J. Biomed. Inform. 42(1), 150–164 (2009)CrossRefGoogle Scholar
  10. 10.
    Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing? Int. J. Hum Comput Stud. 43(5), 907–928 (1995)CrossRefGoogle Scholar
  11. 11.
    Farion, K., Michalowski, W., Wilk, S., O’Sullivan, D.M., Rubin, S., Weiss, D.: Clinical decision support system for point of care use: ontology driven design and software implementation. Methods Inf. Med. 48(4), 381–390 (2009)CrossRefGoogle Scholar
  12. 12.
    Beale, T., Heard, S.: An ontology-based model of clinical information. In: Medinfo 2007: Proceedings of the 12th World Congress on Health (Medical) Informatics; Building Sustainable Health Systems, p. 760. IOS Press (2007)Google Scholar
  13. 13.
    Martínez-Costa, C., Menárguez-Tortosa, M., Fernández-Breis, J.T.: An approach for the semantic interoperability of ISO EN 13606 and OpenEHR archetypes. J. Biomed. Inform. 43(5), 736–746 (2010). Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing? Int. J. Human-Comput. Stud. 43(5), 907–928 (1995)Google Scholar
  14. 14.
    Garde, S., Knaup, P., Hovenga, E.J.S., Heard, S.: Towards semantic interoperability for electronic health records: domain knowledge governance for OpenEHR archetypes. Methods Inf. Med. 46(3), 332–343 (2007)Google Scholar
  15. 15.
    Hayrinen, K., Saranto, K., Nykanen, P.: Definition, structure, content, use and impacts of electronic health records: A review of the research literature. Int. J. Med. Informatics 77(5), 291–304 (2007)CrossRefGoogle Scholar
  16. 16.
    Sanchez, E., Toro, C., Graña, M.: Integrating electronic health records in clinical decision support systems. Innov. Med. Healthcare, 407–416 (2016)Google Scholar
  17. 17.
    Blobel, B., Kalra, D., Koehn, M., Lunn, M., Pharow, P., Ruotsalainen, P., Schulz, S., Smith, B.: The role of ontologies for sustainable, semantically interoperable and trustworthy EHR solutions. In: European Federation for Medical Informatics (2009)Google Scholar
  18. 18.
    ‬‬‬‬‬Sanchez, E., Toro, C., Artetxe A., Graña, M., Sanin, C., Szczerbicki, E., Carrasco, E., Guijarro, F.: Bridging challenges of clinical decision support systems with a semantic approach. A case study on breast cancer. Pattern Recogn. Lett. 34(14), 1758–1768 (2013)Google Scholar
  19. 19.
    Sanchez, E., Peng, W., Toro, C., Sanin, C., Graña, M., Szczerbicki, E., Carrasco, E., Guijarro, F., Brualla, L.: Decisional DNA for modeling and reuse of experiential clinical assessments in breast cancer diagnosis and treatment. Neurocomputing 146, 308–318 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Naiara Muro
    • 1
    • 2
    Email author
  • Eider Sanchez
    • 1
    • 3
  • Manuel Graña
    • 2
  • Eduardo Carrasco
    • 1
    • 3
  • Fran Manzano
    • 4
  • Jose María Susperregi
    • 5
  • Agustin Agirre
    • 5
  • Jesús Gómez
    • 5
  1. 1.Vicomtech-IK4San SebastianSpain
  2. 2.Computational Intelligence GroupUniversity of the Basque Country UPV/EHUSan SebastianSpain
  3. 3.Biodonostia Health Research InstituteSan SebastianSpain
  4. 4.IgarleSan SebastianSpain
  5. 5.La Asunción ClinicTolosaSpain

Personalised recommendations