Review of Automatic Segmentation Methods of White Matter Lesions on MRI Data

  • Darya Chyzhyk
  • Manuel GrañaEmail author
  • Gerhard Ritter
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 60)


White matter (WM) lesions are a phenomena perceived in magnetic resonance imaging (MRI) which is prevalent in many different brain pathologies, hence the general interest in automated methods for lesion segmentation (LS). We provide a short review of some commonly used state-of-the-art approaches. The article is focused on the machine learning techniques which researches use to construct semi- and fully-automated tools for LS. In addition, we mention the preprocessing steps, features extraction, LS databases and validation techniques.


Random Forest Markov Random Field White Matter Hyperintensities Multiple Sclerosis Lesion Tissue Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anbeek, P., Vincken, K.L., van Osch, M.J.P., Bisschops, R.H.C., van der Grond, J.: Automatic segmentation of different-sized white matter lesions by voxel probability estimation. Med. Image Anal. 8(3), 205–215 (2004) (Medical Image Computing and Computer-Assisted Intervention—MICCAI 2003)Google Scholar
  2. 2.
    Anbeek, P., Vincken, K.L., van Osch, M.J.P., Bisschops, R.H.C., van der Grond, J.: Probabilistic segmentation of white matter lesions in mri imaging. NeuroImage 21(3), 1037–1044 (2004)Google Scholar
  3. 3.
    Bijar, A., Khayati, R., Penalver-Benavent, A.: Increasing the contrast of the brain mr flair images using fuzzy membership functions and structural similarity indices in order to segment ms lesions. PLoS ONE 8(6), e65469 (2013)Google Scholar
  4. 4.
    de Boer, R., Vrooman, H.A., van der Lijn, F., Vernooij, M.W., Arfan Ikram, M., van der Lugt, A., Breteler, M.M.B., Niessen, W.J.: White matter lesion extension to automatic brain tissue segmentation on mri. NeuroImage 45(4), 1151–1161 (2009)Google Scholar
  5. 5.
    Garcia-Lorenzo, D., Francis, S., Narayanan, S., Arnold, D.L., Collins, D.L.: Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. Med. Image Anal. 17(1), 1–18 (2013)Google Scholar
  6. 6.
    Jain, S., Sima, D.M., Ribbens, A., Cambron, M., Maertens, A., Van Hecke, W., De Mey, J., Barkhof, F., Steenwijk, M.D., Daams, M., Maes, F., Van Huffel, S., Vrenken, H., Smeets, D.: Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images. NeuroImage: Clinical 8, 367–375 (2015)Google Scholar
  7. 7.
    Klöppel, S., Abdulkadir, A., Hadjidemetriou, S., Issleib, S., Frings, L., Thanh, T., Mader, I., Teipel, S., Hüll, M., Ronneberger, O.: A comparison of different automated methods for the detection of white matter lesions in MRI data. NeuroImage 57(2), 416–422 (2011)CrossRefGoogle Scholar
  8. 8.
    Mitra, J., Bourgeat, P., Fripp, J., Ghose, S., Rose, S., Salvado, O., Connelly, A., Campbell, B., Palmer, S., Sharma, G., Christensen, Soren, Carey, L.: Lesion segmentation from multimodal MRI using random forest following ischemic stroke. NeuroImage 98, 324–335 (2014)CrossRefGoogle Scholar
  9. 9.
    Ramirez, J., Gibson, E., Quddus, A., Lobaugh, N.J., Feinstein, A., Levine, B., Scott, C.J.M., Levy-Cooperman, N., Gao, F.Q., Black, S.E.: Lesion explorer: a comprehensive segmentation and parcellation package to obtain regional volumetrics for subcortical hyperintensities and intracranial tissue. NeuroImage 54(2), 963–973 (2011)CrossRefGoogle Scholar
  10. 10.
    Roy, P.K., Bhuiyan, A., Janke, A., Desmond, P.M., Wong, T.Y., Abhayaratna, W.P., Storey, E., Ramamohanarao, K.: Automatic white matter lesion segmentation using contrast enhanced flair intensity and markov random field. Comput. Med. Imaging Graph. 45, 102–111 (2015)Google Scholar
  11. 11.
    Schmidt, P., Gaser, C., Arsic, M., Buck, D., Forschler, A., Berthele, A., Hoshi, M., Ilg, R., Schmid, V.J., Zimmer, C., Hemmer, B., Muhlau, M.: An automated tool for detection of flair-hyperintense white-matter lesions in multiple sclerosis. NeuroImage 59(4), 3774–3783 (2012)CrossRefGoogle Scholar
  12. 12.
    Seghier, M.L., Ramlackhansingh, A., Crinion, J., Leff, A.P., Price, C.J.: Lesion identification using unified segmentation-normalisation models and fuzzy clustering. NeuroImage 41(4), 1253–1266 (2008)CrossRefGoogle Scholar
  13. 13.
    Steenwijk, M.D., Pouwels, P.J.W., Daams, M., van Dalen, J.W., Caan, M.W.A., Richard, E., Barkhof, F., Vrenken, H.: Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (knn-ttps). NeuroImage: Clinical 3, 462–469 (2013)Google Scholar
  14. 14.
    Sweeney, E.M., Vogelstein, J.T., Cuzzocreo, J.L., Calabresi, P.A., Reich, D.S., Crainiceanu, C.M., Shinohara, R.T.: A comparison of supervised machine learning algorithms and feature vectors for ms lesion segmentation using multimodal structural mri. PLoS ONE 9(4), e95753 (2014)Google Scholar
  15. 15.
    Valverde, S., Oliver, A., Roura, E., Pareto, D., Vilanova, J.C., Ramio-Torrenta, L., Sastre-Garriga, J., Montalban, X., Rovira, A., Llado, X.: Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling. NeuroImage: Clinical (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.GIC Rearch Group of the UPV/EHUDonostia/San SebastiánSpain
  2. 2.CISE DepartmentUniversity of FloridaGainesvilleUSA

Personalised recommendations