Emotional Induction Through Films: A Model for the Regulation of Emotions

  • Luz Fernández-AguilarEmail author
  • José Miguel Latorre
  • Laura Ros
  • Juan Pedro Serrano
  • Jorge Ricarte
  • Arturo Martínez-Rodrigo
  • Roberto Zangróniz
  • José Manuel Pastor
  • María T. López
  • Antonio Fernández-CaballeroEmail author
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 60)


This paper introduces a software program to recognise discrete emotions on an ageing adult from his/her physiological and psychological responses. This research considers the capacity from an audiovisual method to evoke different emotions and uses it to interpret and modulate basic emotion states. Different body sensors, in the case of physiological response, and a set of questionnaires, in the case of psychological responses, are selected to measure the power in causing fear, anger, disgust, sadness, amusement, affection and the neutral state, through a set of films used as an emotional induction method. The initial results suggest that it is possible to extract discrete values about positive and negative emotional states with films and to use these responses as keys to get emotion regulation.


Emotion induction Films Emotional regulation 



This work was partially supported by Spanish Ministerio de Economía y Competitividad/FEDER under TIN2013-47074-C2-1-R grant.


  1. 1.
    World Health Organization. Ageing and Life Course (2011)Google Scholar
  2. 2.
    Castillo, J.C., Fernández-Caballero, A., Castro-González, Á., Salichs, M.A., López, M.T.: A framework for recognizing and regulating emotions in the elderly. In: Ambient Assisted Living and Daily Activities, pp. 320–327 (2014)Google Scholar
  3. 3.
    Fernández-Caballero, A., Latorre, J.M., Pastor, J.M., Fernández-Sotos, A.: Improvement of the elderly quality of life and care through smart emotion regulation. In: Ambient Assisted Living and Daily Activities, pp. 348–355 (2014)Google Scholar
  4. 4.
    Costa, A., Castillo, J.C., Novais, P., Fernández-Caballero, A., Simoes, R.: Sensor-driven agenda for intelligent home care of the elderly. Expert Syst. Appl. 39(15), 12192–12204 (2012)CrossRefGoogle Scholar
  5. 5.
    Castillo, J.C., Castro-González, Á., Fernández-Caballero, A., Latorre, J.M., Pastor, J.M., Fernández-Sotos, A., Salichs, M.A.: Software architecture for smart emotion recognition and regulation of the ageing adult. Cogn. Comput. (2016). doi: 10.1007/s12559-016-9383-y Google Scholar
  6. 6.
    Fernández-Caballero, A., Castillo, J.C., Rodríguez-Sánchez, J.M.: Human activity monitoring by local and global finite state machines. Expert Syst. Appl. 39(8), 6982–6993 (2012)CrossRefGoogle Scholar
  7. 7.
    Lench, H.C., Flores, S.A., Bench, S.W.: Discrete emotions predict changes in cognition, judgment, experience, behavior, and physiology: a meta-analysis of experimental emotion elicitations. Psychol. Bull. 137(5), 834–855 (2011)CrossRefGoogle Scholar
  8. 8.
    Fernández-Sotos, A., Fernández-Caballero, A., Latorre, J.M.: Elicitation of emotions through music: the influence of note value. In: Artificial Computation in Biology and Medicine, pp. 488–497 (2015)Google Scholar
  9. 9.
    Ortiz-García-Cervigón, V., Sokolova, M.V., García-Muoz, R., Fernández-Caballero, A.: LED strips for color- and illumination-based emotion regulation at home. In: Ambient Assisted Living. Development and Testing of ICT-Based Solutions in Real Life Situations, pp. 277–287 (2015)Google Scholar
  10. 10.
    Salas, C.E., Radovic, D., Turnbull, O.H.: Inside-out: comparing internally generated and externally generated basic emotions. Emotion 12(3), 568–578 (2012)CrossRefGoogle Scholar
  11. 11.
    Ekman, P.: Expression and the nature of emotion. In: Scherer, K.R., Ekman, P. (eds.) Approaches to Emotions. Erlbaum, Hillsdale (1984)Google Scholar
  12. 12.
    Rottenberg, J., Ray, R.D., Gross, J.J.: Emotion elicitation using film. In: Coan, J.A., Allen, J.B. (eds.) Handbook of Emotion Elicitation and Assessment, pp. 9–28. Oxford University Press, New York (2007)Google Scholar
  13. 13.
    Fernández, C., Pascual, J.C., Soler, J., Elices, M., Portella, M.J., Fernández-Abascal, E.: Physiological responses induced by emotion-eliciting films. Appl. Psychophysiol., Biofeedback 37(2), 73–79 (2012)CrossRefGoogle Scholar
  14. 14.
    Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25(1), 49–59 (1994)CrossRefGoogle Scholar
  15. 15.
    Philippot, P., Schaefer, A., Herbette, G.: Consequences of specific processing of emotional information: impact of general versus specific autobiographical memory priming on emotion elicitation. Emotion 3, 270–283 (2003)CrossRefGoogle Scholar
  16. 16.
    Schaefer, A., Fletcher, K., Pottage, C., Alexander, K., Brown, C.: The effects of emotional intensity on ERP correlates of recognition memory. NeuroReport 20(3), 319–324 (2009)CrossRefGoogle Scholar
  17. 17.
    Lidberg, L., Wallin, G.: Sympathhetic skin nerve discharges in relation to amplitude of skin resistance responses. Psychopysiology 18(3), 268–270 (1981)CrossRefGoogle Scholar
  18. 18.
    Venables, P.H., Christie, M.J.: Electrodermal activity. In: Techniques in Psychophysiology, pp. 3–67 (2012)Google Scholar
  19. 19.
    Leijdekkers, P., Gay, V., Frederick, W.: CaptureMyEmotion: a mobile app to improve emotion learning for autistic children using sensors. In: 26th IEEE International Symposium on Computer-Based Medical Systems, pp. 381–384 (2013)Google Scholar
  20. 20.
    Martínez-Rodrigo, A., Zangróniz, R., Pastor, J.M., Fernández-Caballero, A.: Arousal level classification in the ageing adult by measuring electrodermal skin conductivity. In: Ambient Intelligence for Health, pp. 213–223 (2015)Google Scholar
  21. 21.
    Martínez-Rodrigo, A., Zangróniz, R., Pastor, J.M., Latorre, J.M., Fernández-Caballero, A.: Emotion detection in ageing adults from physiological sensors. In: Ambient Intelligence-Software and Applications, pp. 253–261 (2015)Google Scholar
  22. 22.
    Zhou, Q., Wang, X.: Real-time facial expression recognition system based-on geometric features. Lect. Notes Electr. Eng. 212, 449–456 (2013)CrossRefGoogle Scholar
  23. 23.
    Beck, A.T., Ward, C.H., Mendelson, M., Mock, J., Erbaugh, J.: An inventory for measuring depression. Arch. Gen. Psychiatry 4, 561–571 (1961)CrossRefGoogle Scholar
  24. 24.
    Lozano-Monasor, E., López, M.T., Fernández-Caballero, A., Vigo-Bustos, F.: Facial expression recognition from webcam based on active shape models and support vector machines. In: Ambient Assisted Living and Daily Activities, pp. 147–154 (2014)Google Scholar
  25. 25.
    Watson, D., Clark, L.A., Tellegen, A.: Development and validation of brief measures of positive and negative affect: the PANAS scales. J. Pers. Soc. Psychol. 54, 1063–1070 (1988)CrossRefGoogle Scholar
  26. 26.
    Folstein, M., Folstein, S.E., McHugh, P.R.: “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12(3), 189–198 (1975)CrossRefGoogle Scholar
  27. 27.
    Schaefer, A., Nils, F., Sanchez, X., Philippot, P.: Assessing the effectiveness of a large database of emotion-eliciting films: a new tool for emotion researchers. Cogn. Emot. 24(7), 1153–1172 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Luz Fernández-Aguilar
    • 1
    Email author
  • José Miguel Latorre
    • 1
  • Laura Ros
    • 1
  • Juan Pedro Serrano
    • 1
  • Jorge Ricarte
    • 1
  • Arturo Martínez-Rodrigo
    • 2
  • Roberto Zangróniz
    • 2
  • José Manuel Pastor
    • 2
  • María T. López
    • 3
  • Antonio Fernández-Caballero
    • 3
    Email author
  1. 1.Universidad de Castilla-La Mancha, Unidad de Psicología Cognitiva Aplicada (CICYPA)AlbaceteSpain
  2. 2.Instituto de Tecnologías AudiovisualesUniversidad de Castilla-La ManchaCuencaSpain
  3. 3.Instituto de Investigación en Informática de AlbaceteUniversidad de Castilla-La ManchaAlbaceteSpain

Personalised recommendations