Quantitative EEG and Virtual Reality to Support Post-stroke Rehabilitation at Home

  • Alfonso MastropietroEmail author
  • Sara Arlati
  • Simona Mrakic-Sposta
  • Luca Fontana
  • Cristina Franchin
  • Matteo Malosio
  • Simone Pittaccio
  • Cristina Gramigna
  • Franco Molteni
  • Marco Sacco
  • Giovanna Rizzo
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 60)


Post-stroke rehabilitation has an enormous impact on health services worldwide because of the high prevalence of stroke, in continuous growth due to the progressive population aging. Systems for neuro-motor rehabilitation at home can help reduce the economic burden of long lasting treatment in chronic post-stroke patients; however the efficacy of these systems in providing a correct and effective rehabilitation should be established. From this point of view, coupling home rehabilitation systems with quantitative EEG methodologies for objectively characterizing patients’ cerebral activity could be useful for the clinician to optimize the rehabilitation protocol and assess its efficacy. Moreover, the use of virtual/augmented reality technologies could assist the patients during unsupervised rehabilitation by providing an empathic feedback to improve their adherence to the treatment. These two aspects were studied and implemented in RIPRENDO@home, a multidisciplinary project, aimed to develop an integrated technological platform oriented to home neurorehabilitation for stroke patients.


Neuro-rehabilitation Stroke EEG Virtual reality 



The authors wish to thank Dr. Fabio Rastelli for his useful contribution in EEG acquisitions and Dr. Stefano Mottura, Dr. Claudia Redaelli and Dr. Andrea Zangiacomi for their contribution to the REAPP development. The authors want to thank the Scientific Institute IRCCS Eugenio Medea (Bosisio Parini, Italy) and the Lombardy Cluster “Technologies for Living Environments” for supporting the project activity.

The work was performed within the RIPRENDO@Home Project, regional research project funded inside the Framework Agreement between Regione Lombardia and National Research Council, D.G.R. n. 3728-11/07/2012.


  1. 1.
    World Health Organization: The Global Burden of Disease: 2004 update. Update, vol. 2010 (2008). doi: 10.1038/npp.2011.85 Google Scholar
  2. 2.
    Millán, M., Dávalos, A.: The need for new therapies for acute ischaemic stroke. Cerebrovasc. Dis. 22, 3–9 (2006)CrossRefGoogle Scholar
  3. 3.
    WHO: Neurological disorders: a public health approach. Neurol. Disord. Public Health Challeng., 41–176 (2006)Google Scholar
  4. 4.
    Johnson, M.J., Feng, X., Johnson, L.M., Winters, J.M.: Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation. J. Neuroeng. Rehabil. 4, 6 (2007)CrossRefGoogle Scholar
  5. 5.
    Corsi-Cabrera, M., Galindo-Vilchis, L., del-Río-Portilla, Y., Arce, C., Ramos-Loyo, J.: Within-subject reliability and inter-session stability of EEG power and coherent activity in women evaluated monthly over nine months. Clin. Neurophysiol. 118, 9–21 (2007)Google Scholar
  6. 6.
    Finnigan, S., van Putten, M.J.A.M.: EEG in ischaemic stroke: quantitative EEG can uniquely inform (sub-)acute prognoses and clinical management. Clin. Neurophysiol. 124, 10–19 (2013)CrossRefGoogle Scholar
  7. 7.
    Leon-Carrion, J., Martin-Rodriguez, J.F., Damas-Lopez, J., Barroso y Martin, J.M., Dominguez-Morales, M.R.: Delta-alpha ratio correlates with level of recovery after neurorehabilitation in patients with acquired brain injury. Clin. Neurophysiol. 120, 1039–1045 (2009)Google Scholar
  8. 8.
    Pfurtscheller, G.: Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–1857 (1999)CrossRefGoogle Scholar
  9. 9.
    Sale, P., Infarinato, F., Del Percio, C., Lizio, R., Babiloni, C., Foti, C., Franceschini, M.: Electroencephalographic markers of robot-aided therapy in stroke patients for the evaluation of upper limb rehabilitation. Int. J. Rehabil. Res. Int. Zeitschrift für Rehabil. Rev. Int. Rech. Réadaptation. 38, 294–305 (2015)Google Scholar
  10. 10.
    Gandolfi, M., Formaggio, E., Geroin, C., Storti, S.F., Boscolo Galazzo, I., Waldner, A., Manganotti, P., Smania, N.: Electroencephalographic changes of brain oscillatory activity after upper limb somatic sensation training in a patient with somatosensory deficit after stroke. Clin. EEG Neurosci. 46, 347–352 (2015)Google Scholar
  11. 11.
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004)CrossRefGoogle Scholar
  12. 12.
    Iriarte, J., Urrestarazu, E., Valencia, M., Alegre, M., Malanda, A., Viteri, C., Artieda, J.: Independent component analysis as a tool to eliminate artifacts in EEG: a quantitative study. J. Clin. Neurophysiol. 20, 249–257 (2003)CrossRefGoogle Scholar
  13. 13.
    Makeig, S.: Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalogr. Clin. Neurophysiol. 86, 283–293 (1993)CrossRefGoogle Scholar
  14. 14.
    Pfurtscheller, G.: Functional brain imaging based on ERD/ERS. Vis. Res. 41, 1257–1260 (2001)CrossRefGoogle Scholar
  15. 15.
    Wolf, S.L., Blanton, S., Baer, H., Breshears, J., Butler, A.J.: Repetitive task practice: a critical review of constraint-induced movement therapy in stroke. Neurologist 8, 325–338 (2002)Google Scholar
  16. 16.
    Johnson, M.J., Johnson, L.M., Ramachandran, B., Winters, J.M., Kosasih, J.B.: Robotic Systems that Rehabilitate as well as Motivate: Three Strategies for Motivating Impaired Arm Use. In: The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006. pp. 254–259. IEEE (2006)Google Scholar
  17. 17.
    Shah, N., Basteris, A., Amirabdollahian, F.: Design parameters in multimodal games for rehabilitation. Games Health J. 3, 13–20 (2014)CrossRefGoogle Scholar
  18. 18.
    Flores, E., Tobon, G., Cavallaro, E., Cavallaro, F.I., Perry, J.C., Keller, T.: Improving patient motivation in game development for motor deficit rehabilitation. In: Proceedings 2008 International Conference on Advances in Computer Entertainment Technology—ACE ’08, vol. 7, p. 381 (2008)Google Scholar
  19. 19.
    Bayón-Calatayud, M., Peri, E., Fernández Nistal, F., Duff, M., Nieto-Escámez, F., Lange, B., Koenig, S.: Virtual rehabilitation. In: Emerging Therapies in Neurorehabilitation II, pp. 1–11 (2015)Google Scholar
  20. 20.
    Pastor, I., Hayes, H.A., Bamberg, S.J.M.: A feasibility study of an upper limb rehabilitation system using Kinect and computer games. In: Conference on Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1286–1289 (2012)Google Scholar
  21. 21.
    M. F. Levin, J. E. Deutsch, M. Kafri, and D. G. Liebermann, “Validity of Virtual Reality Environments for Sensorimotor Rehabilitation,” in Virtual Reality for Physical and Motor Rehabilitation, Springer, 2014, pp. 95–118Google Scholar
  22. 22.
    Parker, J., Mawson, S., Mountain, G., Nasr, N., Zheng, H.: Stroke patients’ utilisation of extrinsic feedback from computer-based technology in the home: a multiple case study realistic evaluation. BMC Med. Inf. Decis. Mak. 14, 46 (2014)CrossRefGoogle Scholar
  23. 23.
    Kiper, P., Agostini, M., Luque-Moreno, C., Tonin, P., Turolla, A.: Reinforced feedback in virtual environment for rehabilitation of upper extremity dysfunction after stroke: preliminary data from a randomized controlled trial. Biomed Res. Int. 2014, 752128 (2014)CrossRefGoogle Scholar
  24. 24.
    Zangiacomi, A., Redaelli, C., Valentini, F., Bernardelli, G.: Design of interaction in a virtual environment for post-stroke rehabilitation: a cognitive perspective. In: 2014 5th IEEE Conference on Cognitive Infocommunications (CogInfoCom). pp. 167–172. IEEE (2014)Google Scholar
  25. 25.
    Mottura, S., Arlati, S., Fontana, L., Sacco, M.: Enhancing awareness and personification by virtual reality and multimedia means in post-stroke patients during rehabilitation. In: 2014 5th IEEE Conference on Cognitive Infocommunications (CogInfoCom). pp. 179–184. IEEE (2014)Google Scholar
  26. 26.
    Mottura, S., Fontana, L., Arlati, S., Zangiacomi, A., Redaelli, C., Sacco, M.: A virtual reality system for strengthening awareness and participation in rehabilitation for post-stroke patients. J. Multimodal User Interfaces. 9, 341–351 (2015)CrossRefGoogle Scholar
  27. 27.
    S. Mottura, L. Fontana, S. Arlati, C. Redaelli, A. Zangiacomi, and M. Sacco, Focus on Patient in Virtual Reality-Assisted Rehabilitation in Virtual Reality Enhanced Robotic Systems for Disability Rehabilitation, p. 85 (2016)Google Scholar
  28. 28.
    Hall, A.M., Ferreira, P.H., Maher, C.G., Latimer, J., Ferreira, M.L.: The influence of the therapist-patient relationship on treatment outcome in physical rehabilitation: a systematic review. Phys. Ther. 90, 1099–1110 (2010)CrossRefGoogle Scholar
  29. 29.
    Maclean, N., Pound, P.: A critical review of the concept of patient motivation in the literature on physical rehabilitation. Soc. Sci. Med. 50, 495–506 (2000)CrossRefGoogle Scholar
  30. 30.
    Bates, J.: The role of emotion in believable agents. Commun. ACM 37, 122–125 (1994)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alfonso Mastropietro
    • 1
    Email author
  • Sara Arlati
    • 2
  • Simona Mrakic-Sposta
    • 1
  • Luca Fontana
    • 2
  • Cristina Franchin
    • 1
  • Matteo Malosio
    • 2
  • Simone Pittaccio
    • 3
  • Cristina Gramigna
    • 4
  • Franco Molteni
    • 4
  • Marco Sacco
    • 2
  • Giovanna Rizzo
    • 1
  1. 1.Istituto di Bioimmagini e Fisiologia Molecolare (IBFM)Consiglio Nazionale delle RicercheSegrateItaly
  2. 2.Istituto di Tecnologie Industriali e Automazione (ITIA)Consiglio Nazionale delle RicercheMilanItaly
  3. 3.Istituto per l’Energetica e le Interfasi (IENI)Consiglio Nazionale delle RicercheLeccoItaly
  4. 4.Villa BerettaOspedale ValduceCosta MasnagaItaly

Personalised recommendations