Design of a Middleware and Optimization Algorithms for Light Comfort in an Intelligent Environment

  • Teresa Barrón Llamas
  • Rosario Baltazar
  • Miguel A Casillas
  • Lenin Lemus
  • Arnulfo Alanis
  • Víctor Zamudio
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 60)

Abstract

The evolution of technology allows to people with special capabilities of mobility to perform the activities faster and easier. The intelligent environments combined with optimization algorithms and middleware agents could help to this aim. This paper presents the design and the implementation of an architecture of a middleware agent that allows us to make the communication between heterogeneous devices (sensors and actuators of different communication protocols from WiFi to ZigBee). On the other hand, we present a comparison study between micro-algorithms used to get lighting comfort in order to perform an activity in a confined space; this is affect by the light from the outside, which can be blocked by shutters and doors, and lighting of lamps obtained within this space. The micro-algorithm evaluated were: Genetic Algorithm (GA), Artificial Immune System (AIS), Estimation Distribution Algorithm (EDA), Particle Swarm Optimization (PSO), Bee Algorithm (BA) and Bee Swarm Optimization (BSO).

Keywords

Optimization micro-algorithms Middleware agent Intelligent environments Light comfort 

References

  1. 1.
    Augusto, J.C.: Ambient intelligence: basic concepts and applications. Commun. Comput. Inf. Sci. 10, 16–26 (2008)Google Scholar
  2. 2.
    Čongradac, Velimir D., Milosavljevič, Boško B., Veličkovič, Jovan M., Prebiračevič, Bogdan V.: Control of the lighting system using a genetic algorithm. Thermal Sci. 16, 237–250 (2012). doi:10.2298/TSCI120203075C CrossRefGoogle Scholar
  3. 3.
    Romero, W., Zamudio, V., Baltazar, R., Sotelo, M., Soria, J.: Comparative study of BSO and GA for the optimizing energy in ambiente intelligence. In: Advances in Soft Computing, MICAI 2011, Part II, LNAI 7095, pp. 177–188 (2011)Google Scholar
  4. 4.
    Romero, L.A., Zamudio, V., Sotelo, M., Baltazar, R., Mezura, E.: A comparison between meta-heuristics as strategies for minimizing cyclic instability in ambient intelligence. Sensors (2012)Google Scholar
  5. 5.
    Herrera-Lozada, J.C., Calvo, H., Taud, H.: A micro artificial immune system. Polibits 43, 107–111 (2011)CrossRefGoogle Scholar
  6. 6.
    Kim, Y.S., Choi, A.S., Jeong, J.W.: Applying microgenetic algorithm to numerical model for luminous intensity distribution of planar prism LED luminaire. Opt. Commun. 293, 22–30 (2013)CrossRefGoogle Scholar
  7. 7.
    Augusto, J.C., Callaghan, V., Cook, D., Kameas, A., Satoh, I.: Intelligent environments: a manifesto. Hum. Centric Comput. Inf. Sci. 3, 12 (2013). SpringerGoogle Scholar
  8. 8.
    Baquero, R., Rodríguez, J., Mendoza, S., Decouchant, D.: Towards a modular scheme for the integration of ambient intelligence systems. In: 5th International Symposium on Ubiquitous Computing and Ambient Intelligence UCAmI (2011)Google Scholar
  9. 9.
    Youngblood, G.M.: Middleware, Smart Environments: Technologies, Protocols, and Applications. In: Cook, D.J., Hoboken, S.K. (eds.), pp. 101–127. Wiley, New Jersey (2005)Google Scholar
  10. 10.
    Araujo, L., Cervigón, C.: Evolutionary Algorithms, A Practical Approach, 1st edn. In: de C.V. (ed.). SA Alfaomega Grupo, Mexico (2009)Google Scholar
  11. 11.
    Leandro, N.: de Castro y Jonathan Timmis. In: Artificial Immune System: A New Computational Intelligence Approach, 1st edn. Springer, UK (2002)Google Scholar
  12. 12.
    Larrañaga, P., Lozano, J.A.: Estimation of distribution algorithms (2003). http://www.redheur.org/sites/default/files/metodos/EDA01.pdf
  13. 13.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Perth, Australia. IEEE Service Center, Piscataway, NJ, (1995) (in press)Google Scholar
  14. 14.
    Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: The bee algorithm—a novel tool for complex optimisation problems. Intell. Prod. Mach. Syst. 2 (2006)Google Scholar
  15. 15.
    Sotelo-Figueroa, M.A., Baltazar-Flores, M.D.R., Carpio, J.M., Zamudio, V.: A comparison between bee swarm optimization and greedy algorithm for the knapsack problem with bee reallocation. In: 2010 Ninth Mexican International Conference on Articial Intelligence (MICAI), pp. 22–27, 8–13 Nov 2010Google Scholar
  16. 16.
    Tam, V., Cheng, K.Y., Lui, K.S.: Using micro-genetic algorithms to improve localization in wireless sensor networks. J. Commun. 1(4) (2006). Academy PublisherGoogle Scholar
  17. 17.
    Beaubrun, Ronald, Ruiz, Jhon Fredy Llano, Poirier, Benoit, Quintero, Alejandro: A middleware architecture for disseminating delay-constrained information in wireless sensor networks. J. Netw. Comput. Appl. 35, 403–411 (2012). doi:10.1016/j.jnca.2011.09.002 CrossRefGoogle Scholar
  18. 18.
    Technological Arts, Fundada in 1995 (2014). http://www.nanocore12.com/
  19. 19.
  20. 20.
  21. 21.
    Texas Instruments (2013). http://www.ti.com/tool/msp-exp430g2
  22. 22.
    Derrac, J., García, S., Molina, D., Francisco, F.: A practical tutorial on the use of nonparametric statistical test as a methodology for comparing evolutionary and swarm intelligence algorithms. In: Swarm and Evolutionary Computation. Elsevier (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Teresa Barrón Llamas
    • 1
  • Rosario Baltazar
    • 1
  • Miguel A Casillas
    • 1
  • Lenin Lemus
    • 2
  • Arnulfo Alanis
    • 3
  • Víctor Zamudio
    • 1
  1. 1.Instituto Tecnológico de LeónLeónMexico
  2. 2.Universitat Politècnica de ValenciaValenciaSpain
  3. 3.Instituto Tecnológico de TijuanaTijuanaMexico

Personalised recommendations