Non-lineal EEG Modelling by Using Quadratic Entropy for Arousal Level Classification

  • Arturo Martínez-RodrigoEmail author
  • Raúl Alcaraz
  • Beatriz García-Martínez
  • Roberto Zangróniz
  • Antonio Fernández-Caballero
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 60)


Nowadays, assistive technologies together with ubiquitous and pervasive computing are emerging as main alternative to help ageing population. In this respect, an important number of works have been carried out to improve the quality of life in elderly from a physical point of view. However, less efforts have been made in monitoring the mental and emotional states of the elderly. This work presents a non-linear model for discriminating different arousal levels through quadratic entropy and a decision tree-based algorithm. Two hundred and seventy eight EEG recordings lasting one minute each were used to train the proposed model. The recordings belong to the Dataset for Emotion Analysis using Physiological signals (DEAP). In agreement with the complexity and variability observed in other works, our results report a low quadratic entropy when subjects face high arousal stimuli. Finally, the model achieves a global performance around 70 % when discriminating between calm and excitement events.


Entropy EEG Elderly Monitoring Modelling 



This work was partially supported by Spanish Ministerio de Economía y Competitividad/FEDER under TIN2013-47074-C2-1-R and TIN2015-72931-EXP grants


  1. 1.
    Lutz, W., Sanderson, W., Scherbov, S.: The coming acceleration of global population ageing. Nature 451(7179), 716–719 (2008)CrossRefGoogle Scholar
  2. 2.
    United Nations Department of Economic, World Population Ageing 2009, vol. 295. United Nations Publications (2010)Google Scholar
  3. 3.
    Carone, G., Costello, D., Diez Guardia, N., Mourre, G., Przywara, B., Salomäki, A.: The economic impact of ageing populations in the eu25 member states. Directorate General for Economic and Financial Affairs (236)Google Scholar
  4. 4.
    World Health Organization, et al.: Global Health and AgeingGoogle Scholar
  5. 5.
    Castillo, J.C., Castro-González, A., Fernández-Caballero, A., Latorre, J.M., Pastor, J.M., Fernández-Sotos, A., Salichs, M.A.: Software architecture for smart emotion recognition and regulation of the ageing adult. Cognitive Computation. In PressGoogle Scholar
  6. 6.
    Fernández-Caballero, A., Latorre, J.M., Pastor, J.M., Fernández-Sotos, A.: Improvement of the elderly quality of life and care through smart emotion regulation. In: Ambient Assisted Living and Daily Activities, pp. 348–355. Springer (2014)Google Scholar
  7. 7.
    Martínez-Rodrigo, A., Zangróniz, R., Pastor, J.M., Fernández-Caballero, A.: Arousal level classification in the ageing adult by measuring electrodermal skin conductivity. In: Ambient Intelligence for Health, pp. 213–223. Springer (2015)Google Scholar
  8. 8.
    Costa, Â., Castillo, J.C., Novais, P., Fernández-Caballero, A., Simoes, R.: Sensor-driven agenda for intelligent home care of the elderly. Expert Syst. Appl. 39(15), 12192–12204 (2012)CrossRefGoogle Scholar
  9. 9.
    García-Rodríguez, C., Martínez-Tomás, R., Cuadra-Troncoso, J.M., Rincón, M., Fernández-Caballero, A.: A simulation tool for monitoring elderly who suffer from disorientation in a smart home. Expert Syst. 32(6), 676–687 (2015)CrossRefGoogle Scholar
  10. 10.
    German, W.J.: The hypothalamus and central levels of autonomic function. Yale J. Biol. Med. 12(5), 602–603 (1940)Google Scholar
  11. 11.
    Schacter, D.L.: Psychology, 2nd edn. (2011)Google Scholar
  12. 12.
    Nasoz, F., Lisetti, C.L., Alvarez, K., Finkelstein, N.: Emotion recognition from physiological signals for user modeling of affect. In: Proceedings of the 3rd Workshop on Affective and Attitude User Modelling, pp. 1–8 (2003)Google Scholar
  13. 13.
    Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161 (1980)CrossRefGoogle Scholar
  14. 14.
    Kim, J.: Bimodal emotion recognition using speech and physiological changes. In: Robust Speech Recognition and Understanding, INTECH Open, pp. 265–280 (2007)Google Scholar
  15. 15.
    Valenza, G., Lanata, A., Scilingo, E.P.: The role of nonlinear dynamics in affective valence and arousal recognition. IEEE Trans. Affect. Comput. 3(2), 237–249 (2012)CrossRefGoogle Scholar
  16. 16.
    Hatamikia, S., Nasrabadi, A.: Recognition of emotional states induced by music videos based on nonlinear feature extraction and som classification. In: 21th Iranian Conference on Biomedical Engineering, pp. 333–337. IEEE (2014)Google Scholar
  17. 17.
    Akar, S.A., Kara, S., Agambayev, S., Bilgic, V.: Nonlinear analysis of eeg in major depression with fractal dimensions. In: 37th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society), pp. 7410–7413. IEEE (2015)Google Scholar
  18. 18.
    Koelstra, S., Mühl, C., Soleymani, M., Lee, J.-S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., Patras, I.: Deap: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012)CrossRefGoogle Scholar
  19. 19.
    Philippot, P.: Inducing and assessing differentiated emotion-feeling states in the laboratory. Cogn. Emot. 7(2), 171–193 (1993)CrossRefGoogle Scholar
  20. 20.
    Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circulatory Physiol. 278(6), 2039–2049 (2000)Google Scholar
  21. 21.
    Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. 88(6), 2297–2301 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lake, D.E., Moorman, J.R.: Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices. Am. J. Physiol. Heart Circulatory Physiol. 300(1), 319–325 (2011)CrossRefGoogle Scholar
  23. 23.
    Alcaraz, R., Abásolo, D., Hornero, R., Rieta, J.J.: Optimal parameters study for sample entropy-based atrial fibrillation organization analysis. Comput. Methods Prog. Biomed. 99(1), 124–132 (2010)CrossRefGoogle Scholar
  24. 24.
    Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press (1984)Google Scholar
  25. 25.
    Hosseini, S.A., Naghibi-Sistani, M.B.: Classification of emotional stress using brain activity. In: Applied Biomedical Engineering, INTECH Open, pp. 313–336 (2011)Google Scholar
  26. 26.
    Dolcos, F., Cabeza, R.: Event-related potentials of emotional memory: encoding pleasant, unpleasant, and neutral pictures. Cogn. Affect. Behav. Neurosci. 2(3), 252–263 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Arturo Martínez-Rodrigo
    • 1
    Email author
  • Raúl Alcaraz
    • 1
  • Beatriz García-Martínez
    • 1
  • Roberto Zangróniz
    • 1
  • Antonio Fernández-Caballero
    • 2
  1. 1.Instituto de Tecnologías AudiovisualesUniversidad de Castilla-La ManchaCuencaSpain
  2. 2.Instituto de Investigación en Informática de AlbaceteUniversidad de Castilla-La ManchaAlbaceteSpain

Personalised recommendations