Skip to main content

Antimicrobial Drug Efflux Systems as Components of Bacterial Stress Responses

  • Chapter
  • First Online:
Efflux-Mediated Antimicrobial Resistance in Bacteria

Abstract

Chromosomally-encoded broadly specific so-called multidrug efflux systems are widely distributed in bacteria where they are increasingly appreciated as important determinants of antimicrobial resistance. Nonetheless, it is evident that antimicrobial efflux is not the intended function for these efflux systems, many of which are specifically recruited in response to various cell-perturbing environmental stresses. As such, they likely function as components of protective stress responses in these bacteria. The prospect of non-antimicrobial stresses driving efflux gene expression and efflux-mediated antimicrobial resistance has important implications for resistance development in bacteria. A better understanding of the details of their stress regulation and their specific roles in bacterial stress responses may inform efforts to target them therapeutically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ball PR, Shales SW, Chopra I (1980) Plasmid-mediated tetracycline resistance in Escherichia coli involves increased efflux of the antibiotic. Biophys Biochem Res Commun 93:74–81. doi:10.1016/S0006-291X(80)80247-6

    Article  CAS  Google Scholar 

  2. McMurry LM, Petrucci RE Jr, Levy SB (1980) Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci U S A 77:3974–3977. doi:10.1073/pnas.77.7.3974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Butaye P, Cloeckaert A, Schwarz S (2003) Mobile genes coding for efflux-mediated antimicrobial resistance in Gram-positive and Gram-negative bacteria. Int J Antimicrob Agents 22:205–210. doi:10.1016/S0924-8579(03)00202-4

    Google Scholar 

  4. Roberts MC (2008) Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett 282:147–159. doi:10.1111/j.1574-6968.2008.01145.x

    Article  CAS  PubMed  Google Scholar 

  5. Roberts MC (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245:195–203. doi:10.1016/j.femsle.2005.02.034

    Article  CAS  PubMed  Google Scholar 

  6. Poole K (2005) Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56:20–51. doi:10.1093/jac/dki171

    Article  CAS  PubMed  Google Scholar 

  7. Poole K (2004) Efflux-mediated multiresistance in Gram-negative bacteria. Clin Microbiol Infect 10:12–26. doi:10.1111/j.1469-0691.2004.00763.x

    Google Scholar 

  8. Piddock LJ (2006) Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 19:382–402. doi:10.1128/CMR.19.2.382-402.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li X-Z, Plésiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28:337–418. doi:10.1128/CMR.00117-14

    Google Scholar 

  10. Nikaido H, Pagès JM (2012) Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev 36:340–363. doi:10.1111/j.1574-6976.2011.00290.x

    Google Scholar 

  11. Martínez JL, Sánchez MB, Martínez-Solano L, Hernández A, Garmendia L, Fajardo A, Alvarez-Ortega C (2009) Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 33:430–449. doi:10.1111/j.1574-6976.2008.00157.x

    Article  PubMed  CAS  Google Scholar 

  12. Piddock LJ (2006) Multidrug-resistance efflux pumps – not just for resistance. Nat Rev Microbiol 4:629–636. doi:10.1038/nrmicro1464

    Article  CAS  PubMed  Google Scholar 

  13. Poole K (2008) Bacterial multidrug efflux pumps serve other functions. Microbes 3:179–185

    Google Scholar 

  14. Poole K (1994) Bacterial multidrug resistance – emphasis on efflux mechanisms and Pseudomonas aeruginosa. J Antimicrob Chemother 34:453–456. doi:10.1093/jac/34.4.453

    Article  CAS  PubMed  Google Scholar 

  15. Poole K (2013) Pseudomonas aeruginosa efflux pumps. In: Yu EW, Zhang Q, Brown MH (eds) Microbial efflux pumps: current research. Caister Academic Press, Norfolk, pp 175–206

    Google Scholar 

  16. Coyne S, Courvalin P, Perichon B (2011) Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother 55:947–953. doi:10.1128/AAC.01388-10

    Article  CAS  PubMed  Google Scholar 

  17. Sun J, Deng Z, Yan A (2014) Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun 453:254–267. doi:10.1016/j.bbrc.2014.05.090

    Article  CAS  PubMed  Google Scholar 

  18. Andersen JL, He GX, Kakarla P, CR K, Kumar S, Lakra WS, Mukherjee MM, Ranaweera I et al (2015) Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int J Environ Res Public Health 12:1487–1547. doi:10.3390/ijerph120201487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gu M, Imlay JA (2011) The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol Microbiol 79:1136–1150. doi:10.1111/j.1365-2958.2010.07520.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nikaido E, Shirosaka I, Yamaguchi A, Nishino K (2011) Regulation of the AcrAB multidrug efflux pump in Salmonella enterica serovar Typhimurium in response to indole and paraquat. Microbiology 157:648–655. doi:10.1099/mic.0.045757-0

    Article  CAS  PubMed  Google Scholar 

  21. Bialek-Davenet S, Marcon E, Leflon-Guibout V, Lavigne JP, Bert F, Moreau R, Nicolas-Chanoine MH (2011) In vitro selection of ramR and soxR mutants overexpressing efflux systems by fluoroquinolones as well as cefoxitin in Klebsiella pneumoniae. Antimicrob Agents Chemother 55:2795–2802. doi:10.1128/AAC.00156-11

    Google Scholar 

  22. Pérez A, Poza M, Aranda J, Latasa C, Medrano FJ, Tomás M, Romero A, Lasa I et al (2012) Effect of transcriptional activators SoxS, RobA, and RamA on expression of multidrug efflux pump AcrAB-TolC in Enterobacter cloacae. Antimicrob Agents Chemother 56:6256–6266. doi:10.1128/AAC.01085-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Fraud S, Poole K (2010) Oxidative stress induction of the mexXY multidrug efflux genes and promotion of aminoglycoside resistance development in Pseudomonas aeruginosa. Antimicrob Agents Chemother 55:1068–1074. doi:10.1128/AAC.01495-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hay T, Fraud S, Lau CH, Gilmour C, Poole K (2013) Antibiotic inducibility of the mexXY multidrug efflux operon of Pseudomonas aeruginosa: involvement of the MexZ anti-repressor ArmZ. PLoS One 8:e56858. doi:10.1371/journal.pone.0056858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen H, Hu J, Chen PR, Lan L, Li Z, Hicks LM, Dinner AR, He C (2008) The Pseudomonas aeruginosa multidrug efflux regulator MexR uses an oxidation-sensing mechanism. Proc Natl Acad Sci U S A 105:13586–13591. doi:10.1073/pnas.0803391105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Clarke DJ (2010) The Rcs phosphorelay: more than just a two-component pathway. Future Microbiol 5:1173–1184. doi:10.2217/fmb.10.83

    Article  CAS  PubMed  Google Scholar 

  27. Palyada K, Sun YQ, Flint A, Butcher J, Naikare H, Stintzi A (2009) Characterization of the oxidative stress stimulon and PerR regulon of Campylobacter jejuni. BMC Genomics 10:481. doi:10.1186/1471-2164-10-481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hwang S, Zhang Q, Ryu S, Jeon B (2012) Transcriptional regulation of the CmeABC multidrug efflux pump and the KatA catalase by CosR in Campylobacter jejuni. J Bacteriol 194:6883–6891. doi:10.1128/JB.01636-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pontel LB, Audero ME, Espariz M, Checa SK, Soncini FC (2007) GolS controls the response to gold by the hierarchical induction of Salmonella-specific genes that include a CBA efflux-coding operon. Mol Microbiol 66:814–825. doi:10.1111/j.1365-2958.2007.05963.x

    Article  CAS  PubMed  Google Scholar 

  30. Song S, Lee B, Yeom JH, Hwang S, Kang I, Cho JC, Ha NC, Bae J et al (2015) MdsABC-mediated pathway for pathogenicity in Salmonella enterica serovar Typhimurium. Infect Immun 83:4266–4276. doi:10.1128/IAI.00653-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen PR, Bae T, Williams WA, Duguid EM, Rice PA, Schneewind O, He C (2006) An oxidation-sensing mechanism is used by the global regulator MgrA in Staphylococcus aureus. Nat Chem Biol 2:591–595. doi:10.1038/nchembio820

    Article  CAS  PubMed  Google Scholar 

  32. Chen PR, Nishida S, Poor CB, Cheng A, Bae T, Kuechenmeister L, Dunman PM, Missiakas D et al (2009) A new oxidative sensing and regulation pathway mediated by the MgrA homologue SarZ in Staphylococcus aureus. Mol Microbiol 71:198–211. doi:10.1111/j.1365-2958.2008.06518.x

    Article  CAS  PubMed  Google Scholar 

  33. Bogomolnaya LM, Andrews KD, Talamantes M, Maple A, Ragoza Y, Vazquez-Torres A, Andrews-Polymenis H (2013) The ABC-type efflux pump MacAB protects Salmonella enterica serovar Typhimurium from oxidative stress. mBio 4:e00630–13. doi:10.1128/mBio.00630-13

  34. Lin YT, Huang YW, Liou RS, Chang YC, Yang TC (2014) MacABCsm, an ABC-type tripartite efflux pump of Stenotrophomonas maltophilia involved in drug resistance, oxidative and envelope stress tolerances and biofilm formation. J Antimicrob Chemother 69:3221–3226. doi:10.1093/jac/dku317

    Article  CAS  PubMed  Google Scholar 

  35. Wu Y, Vulic M, Keren I, Lewis K (2012) Role of oxidative stress in persister tolerance. Antimicrob Agents Chemother 56:4922–4926. doi:10.1128/aac.00921-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wilson M, DeRisi J, Kristensen HH, Imboden P, Rane S, Brown PO, Schoolnik GK (1999) Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc Natl Acad Sci U S A 96:12833–12838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Srinivasan VB, Vaidyanathan V, Rajamohan G (2015) AbuO, a TolC-like outer membrane protein of Acinetobacter baumannii, is involved in antimicrobial and oxidative stress resistance. Antimicrob Agents Chemother 59:1236–1245. doi:10.1128/aac.03626-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ramón-García S, Martin C, Thompson CJ, Ainsa JA (2009) Role of the Mycobacterium tuberculosis P55 efflux pump in intrinsic drug resistance, oxidative stress responses, and growth. Antimicrob Agents Chemother 53:3675–3682. doi:10.1128/AAC.00550-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Fetar H, Gilmour C, Klinoski R, Daigle DM, Dean CR, Poole K (2011) mexEF-oprN multidrug efflux operon of Pseudomonas aeruginosa: regulation by the MexT activator in response to nitrosative stress and chloramphenicol. Antimicrob Agents Chemother 55:508–514. doi:10.1128/AAC.00830-10

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Y, Xiao M, Horiyama T, Zhang Y, Li X, Nishino K, Yan A (2011) The multidrug efflux pump MdtEF protects against nitrosative damage during the anaerobic respiration in Escherichia coli. J Biol Chem 286:26576–26584. doi:10.1074/jbc.M111.243261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Deng Z, Shan Y, Pan Q, Gao X, Yan A (2013) Anaerobic expression of the gadE-mdtEF multidrug efflux operon is primarily regulated by the two-component system ArcBA through antagonizing the H-NS mediated repression. Front Microbiol 4:194. doi:10.3389/fmicb.2013.00194

    PubMed  PubMed Central  Google Scholar 

  42. Srinivasan VB, Mondal A, Venkataramaiah M, Chauhan NK, Rajamohan G (2013) Role of OxyRKP, a novel LysR-family transcriptional regulator, in antimicrobial resistance and virulence in Klebsiella pneumoniae. Microbiology 159:1301–1314. doi:10.1099/mic.0.065052-0

    Article  CAS  PubMed  Google Scholar 

  43. Lau CH, Krahn T, Gilmour C, Mullen E, Poole K (2015) AmgRS-mediated envelope stress-inducible expression of the mexXY multidrug efflux operon of Pseudomonas aeruginosa. Microbiol Open 4:121–135. doi:10.1002/mbo3.226

    Article  CAS  Google Scholar 

  44. Fraud S, Campigotto AJ, Chen Z, Poole K (2008) The MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane damaging agents dependent upon the AlgU stress-response sigma factor. Antimicrob Agents Chemother 52:4478–4482. doi:10.1128/AAC.01072-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Strempel N, Neidig A, Nusser M, Geffers R, Vieillard J, Lesouhaitier O, Brenner-Weiss G, Overhage J (2013) Human host defense peptide LL-37 stimulates virulence factor production and adaptive resistance in Pseudomonas aeruginosa. PLoS One 8:e82240. doi:10.1371/journal.pone.0082240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Huang YW, Liou RS, Lin YT, Huang HH, Yang TC (2014) A linkage between SmeIJK efflux pump, cell envelope integrity, and σE-mediated envelope stress response in Stenotrophomonas maltophilia. PLoS One 9:e111784. doi:10.1371/journal.pone.0111784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Leblanc SK, Oates CW, Raivio TL (2011) Characterization of the induction and cellular role of the BaeSR two-component envelope stress response of Escherichia coli. J Bacteriol 193:3367–3375. doi:10.1128/JB.01534-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nishino K, Yamasaki S, Hayashi-Nishino M, Yamaguchi A (2010) Effect of NlpE overproduction on multidrug resistance in Escherichia coli. Antimicrob Agents Chemother 54:2239–2243. doi:10.1128/AAC.01677-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nishino K, Nikaido E, Yamaguchi A (2007) Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium. J Bacteriol 189:9066–9075. doi:10.1128/JB.01045-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pletzer D, Weingart H (2014) Characterization and regulation of the resistance-nodulation-cell division-type multidrug efflux pumps MdtABC and MdtUVW from the fire blight pathogen Erwinia amylovora. BMC Microbiol 14:185. doi:10.1186/1471-2180-14-185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Lin MF, Lin YY, Yeh HW, Lan CY (2014) Role of the BaeSR two-component system in the regulation of Acinetobacter baumannii adeAB genes and its correlation with tigecycline susceptibility. BMC Microbiol 14:119. doi:10.1186/1471-2180-14-119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Srinivasan VB, Vaidyanathan V, Mondal A, Rajamohan G (2012) Role of the two component signal transduction system CpxAR in conferring cefepime and chloramphenicol resistance in Klebsiella pneumoniae NTUH-K2044. PLoS One 7:e33777. doi:10.1371/journal.pone.0033777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Srinivasan VB, Rajamohan G (2013) KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother 57:4449–4462. doi:10.1128/AAC.02284-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Taylor DL, Bina XR, Slamti L, Waldor MK, Bina JE (2014) Reciprocal regulation of resistance-nodulation-division efflux systems and the Cpx two-component system in Vibrio cholerae. Infect Immun 82:2980–2991. doi:10.1128/iai.00025-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Acosta N, Pukatzki S, Raivio TL (2015) The Vibrio cholerae Cpx envelope stress response senses and mediates adaptation to low iron. J Bacteriol 197:262–276. doi:10.1128/jb.01957-14

    Article  PubMed  CAS  Google Scholar 

  56. Hiron A, Falord M, Valle J, Debarbouille M, Msadek T (2011) Bacitracin and nisin resistance in Staphylococcus aureus: a novel pathway involving the BraS/BraR two-component system (SA2417/SA2418) and both the BraD/BraE and VraD/VraE ABC transporters. Mol Microbiol 81:602–622. doi:10.1111/j.1365-2958.2011.07735.x

    Article  CAS  PubMed  Google Scholar 

  57. Yoshida Y, Matsuo M, Oogai Y, Kato F, Nakamura N, Sugai M, Komatsuzawa H (2011) Bacitracin sensing and resistance in Staphylococcus aureus. FEMS Microbiol Lett 320:33–39. doi:10.1111/j.1574-6968.2011.02291.x

    Article  CAS  PubMed  Google Scholar 

  58. Rosenberg EY, Bertenthal D, Nilles ML, Bertrand KP, Nikaido H (2003) Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein. Mol Microbiol 48:1609–1619. doi:10.1046/j.1365-2958.2003.03531.x

    Article  CAS  PubMed  Google Scholar 

  59. Prouty AM, Brodsky IE, Falkow S, Gunn JS (2004) Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella Typhimurium. Microbiology 150:775–783. doi:10.1099/mic.0.26769-0

    Article  CAS  PubMed  Google Scholar 

  60. Nikaido E, Yamaguchi A, Nishino K (2008) AcrAB multidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environmental signals. J Biol Chem 283:24245–24253. doi:10.1074/jbc.M804544200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chatterjee A, Chaudhuri S, Saha G, Gupta S, Chowdhury R (2004) Effect of bile on the cell surface permeability barrier and efflux system of Vibrio cholerae. J Bacteriol 186:6809–6814. doi:10.1128/JB.186.20.6809-6814.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bina JE, Provenzano D, Wang C, Bina XR, Mekalanos JJ (2006) Characterization of the Vibrio cholerae vexAB and vexCD efflux systems. Arch Microbiol 186:171–181. doi:10.1007/s00203-006-0133-5

    Article  CAS  PubMed  Google Scholar 

  63. Cerda-Maira FA, Ringelberg CS, Taylor RK (2008) The bile response repressor BreR regulates expression of the Vibrio cholerae breAB efflux system operon. J Bacteriol 190:7441–7452. doi:10.1128/jb.00584-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lin J, Cagliero C, Guo B, Barton YW, Maurel MC, Payot S, Zhang Q (2005) Bile salts modulate expression of the CmeABC multidrug efflux pump in Campylobacter jejuni. J Bacteriol 187:7417–7424. doi:10.1128/JB.187.21.7417-7424.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pumbwe L, Skilbeck CA, Nakano V, Avila-Campos MJ, Piazza RM, Wexler HM (2007) Bile salts enhance bacterial co-aggregation, bacterial-intestinal epithelial cell adhesion, biofilm formation and antimicrobial resistance of Bacteroides fragilis. Microb Pathog 43:78–87. doi:10.1016/j.micpath.2007.04.002

    Article  CAS  PubMed  Google Scholar 

  66. Raczkowska A, Trzos J, Lewandowska O, Nieckarz M, Brzostek K (2015) Expression of the AcrAB components of the AcrAB-TolC multidrug efflux pump of Yersinia enterocolitica is subject to dual regulation by OmpR. PLoS One 10:e0124248. doi:10.1371/journal.pone.0124248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Holdsworth SR, Law CJ (2013) Multidrug resistance protein MdtM adds to the repertoire of antiporters involved in alkaline pH homeostasis in Escherichia coli. BMC Microbiol 13:113. doi:10.1186/1471-2180-13-113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hassan KA, Jackson SM, Penesyan A, Patching SG, Tetu SG, Eijkelkamp BA, Brown MH, Henderson PJ et al (2013) Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins. Proc Natl Acad Sci U S A 110:20254–20259. doi:10.1073/pnas.1317052110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pumbwe L, Skilbeck CA, Wexler HM (2007) Induction of multiple antibiotic resistance in Bacteroides fragilis by benzene and benzene-derived active compounds of commonly used analgesics, antiseptics and cleaning agents. J Antimicrob Chemother 60:1288–1297. doi:10.1093/jac/dkm363

    Article  CAS  PubMed  Google Scholar 

  70. Coenye T, Van Acker H, Peeters E, Sass A, Buroni S, Riccardi G, Mahenthiralingam E (2011) Molecular mechanisms of chlorhexidine tolerance in Burkholderia cenocepacia biofilms. Antimicrob Agents Chemother 55:1912–1919. doi:10.1128/aac.01571-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Buroni S, Matthijs N, Spadaro F, Van Acker H, Scoffone VC, Pasca MR, Riccardi G, Coenye T (2014) Differential roles of RND efflux pumps in antimicrobial drug resistance of sessile and planktonic Burkholderia cenocepacia cells. Antimicrob Agents Chemother 58:7424–7429. doi:10.1128/AAC.03800-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Kaatz GW, Seo SM (2004) Effect of substrate exposure and other growth condition manipulations on norA expression. J Antimicrob Chemother 54:364–369. doi:10.1093/jac/dkh341

    Article  CAS  PubMed  Google Scholar 

  73. Truong-Bolduc QC, Villet RA, Estabrooks ZA, Hooper DC (2014) Native efflux pumps contribute resistance to antimicrobials of skin and the ability of Staphylococcus aureus to colonize skin. J Infect Dis 209:1485–1493. doi:10.1093/infdis/jit660

    Article  CAS  PubMed  Google Scholar 

  74. Muller C, Plésiat P, Jeannot K (2010) A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and ß-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother 55:1211–1221. doi:10.1128/AAC.01252-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Henry R, Crane B, Powell D, Deveson Lucas D, Li Z, Aranda J, Harrison P, Nation RL et al (2015) The transcriptomic response of Acinetobacter baumannii to colistin and doripenem alone and in combination in an in vitro pharmacokinetics/pharmacodynamics model. J Antimicrob Chemother 70:1303–1313. doi:10.1093/jac/dku536

    Google Scholar 

  76. Li M, Cha DJ, Lai Y, Villaruz AE, Sturdevant DE, Otto M (2007) The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol 66:1136–1147. doi:10.1111/j.1365-2958.2007.05986.x

    Article  CAS  PubMed  Google Scholar 

  77. Rouquette C, Harmon JB, Shafer WM (1999) Induction of the mtrCDE-encoded efflux pump system of Neisseria gonorrhoeae requires MtrA, an AraC-like protein. Mol Microbiol 33:651–658. doi:10.1046/j.1365-2958.1999.01517.x

    Article  CAS  PubMed  Google Scholar 

  78. Cuaron JA, Dulal S, Song Y, Singh AK, Montelongo CE, Yu W, Nagarajan V, Jayaswal RK et al (2013) Tea tree oil-induced transcriptional alterations in Staphylococcus aureus. Phytother Res 27:390–396. doi:10.1002/ptr.4738

    Article  CAS  PubMed  Google Scholar 

  79. Dutta NK, Mehra S, Kaushal D (2010) A Mycobacterium tuberculosis sigma factor network responds to cell-envelope damage by the promising anti-mycobacterial thioridazine. PLoS One 5:e10069. doi:10.1371/journal.pone.0010069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Rojas A, Duque E, Mosqueda G, Golden G, Hurtado A, Ramos JL, Segura A (2001) Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-T1E. J Bacteriol 183:3967–3973. doi:10.1128/JB.183.13.3967-3973.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Guazzaroni ME, Krell T, Felipe A, Ruiz R, Meng C, Zhang X, Gallegos MT, Ramos JL (2005) The multidrug efflux regulator TtgV recognizes a wide range of structurally different effectors in solution and complexed with target DNA: evidence from isothermal titration calorimetry. J Biol Chem 280:20887–20893. doi:10.1074/jbc.M500783200

    Article  CAS  PubMed  Google Scholar 

  82. Teran W, Felipe A, Fillet S, Guazzaroni ME, Krell T, Ruiz R, Ramos JL, Gallegos MT (2007) Complexity in efflux pump control: cross-regulation by the paralogues TtgV and TtgT. Mol Microbiol 66:1416–1428. doi:10.1111/j.1365-2958.2007.06004.x

    CAS  PubMed  Google Scholar 

  83. Lewinson O, Padan E, Bibi E (2004) Alkalitolerance: a biological function for a multidrug transporter in pH homeostasis. Proc Natl Acad Sci U S A 101:14073–14078. doi:10.1073/pnas.0405375101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Anderson KL, Roberts C, Disz T, Vonstein V, Hwang K, Overbeek R, Olson PD, Projan SJ et al (2006) Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. J Bacteriol 188:6739–6756. doi:10.1128/jb.00609-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Adams KN, Takaki K, Connolly LE, Wiedenhoft H, Winglee K, Humbert O, Edelstein PH, Cosma CL et al (2011) Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145:39–53. doi:10.1016/j.cell.2011.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Weir TL, Stull VJ, Badri D, Trunck LA, Schweizer HP, Vivanco J (2008) Global gene expression profiles suggest an important role for nutrient acquisition in early pathogenesis in a plant model of Pseudomonas aeruginosa infection. Appl Environ Microbiol 74:5784–5791. doi:10.1128/AEM.00860-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Frisk A, Schurr JR, Wang G, Bertucci DC, Marrero L, Hwang SH, Hassett DJ, Schurr MJ (2004) Transcriptome analysis of Pseudomonas aeruginosa after interaction with human airway epithelial cells. Infect Immun 72:5433–5438. doi:10.1128/IAI.72.9.5433-5438.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Machado D, Couto I, Perdigao J, Rodrigues L, Portugal I, Baptista P, Veigas B, Amaral L et al (2012) Contribution of efflux to the emergence of isoniazid and multidrug resistance in Mycobacterium tuberculosis. PLoS One 7:e34538. doi:10.1371/journal.pone.0034538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Walter ND, Dolganov GM, Garcia BJ, Worodria W, Andama A, Musisi E, Ayakaka I, Van TT et al (2015) Transcriptional adaptation of drug-tolerant Mycobacterium tuberculosis during treatment of human tuberculosis. J Infect Dis 21:990–998. doi:10.1093/infdis/jiv149

    Article  Google Scholar 

  90. Jiang X, Zhang W, Zhang Y, Gao F, Lu C, Zhang X, Wang H (2008) Assessment of efflux pump gene expression in a clinical isolate Mycobacterium tuberculosis by real-time reverse transcription PCR. Microb Drug Resist 14:7–11. doi:10.1089/mdr.2008.0772

    Article  CAS  PubMed  Google Scholar 

  91. Gupta AK, Katoch VM, Chauhan DS, Sharma R, Singh M, Venkatesan K, Sharma VD (2010) Microarray analysis of efflux pump genes in multidrug-resistant Mycobacterium tuberculosis during stress induced by common anti-tuberculous drugs. Microb Drug Resist 16:21–28. doi:10.1089/mdr.2009.0054

    Article  CAS  PubMed  Google Scholar 

  92. Boshoff HI, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE 3rd (2004) The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279:40174–40184. doi:10.1074/jbc.M406796200

    Article  CAS  PubMed  Google Scholar 

  93. Morris RP, Nguyen L, Gatfield J, Visconti K, Nguyen K, Schnappinger D, Ehrt S, Liu Y et al (2005) Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 102:12200–12205. doi:10.1073/pnas.0505446102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lavilla Lerma L, Benomar N, Valenzuela AS, Casado Munoz Mdel C, Galvez A, Abriouel H (2014) Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor. Food Microbiol 44:249–257. doi:10.1016/j.fm.2014.06.009

    Article  CAS  PubMed  Google Scholar 

  95. Guerrero P, Collao B, Morales EH, Calderon IL, Ipinza F, Parra S, Saavedra CP, Gil F (2012) Characterization of the BaeSR two-component system from Salmonella Typhimurium and its role in ciprofloxacin-induced mdtA expression. Arch Microbiol 194:453–460. doi:10.1007/s00203-011-0779-5

    Article  CAS  PubMed  Google Scholar 

  96. Holder D, Berry D, Dai D, Raskin L, Xi C (2013) A dynamic and complex monochloramine stress response in Escherichia coli revealed by transcriptome analysis. Water Res 47:4978–4985. doi:10.1016/j.watres.2013.05.041

    Article  CAS  PubMed  Google Scholar 

  97. El Garch F, Lismond A, Piddock LJ, Courvalin P, Tulkens PM, Van Bambeke F (2010) Fluoroquinolones induce the expression of patA and patB, which encode ABC efflux pumps in Streptococcus pneumoniae. J Antimicrob Chemother 65:2076–2082. doi:10.1093/jac/dkq287

    Article  PubMed  CAS  Google Scholar 

  98. Morita Y, Sobel ML, Poole K (2006) Antibiotic inducibility of the MexXY multidrug efflux system of Pseudomonas aeruginosa: involvement of the antibiotic-inducible PA5471 gene product. J Bacteriol 188:1847–1855. doi:10.1128/JB.188.5.1847-1855.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T (2000) Contribution of the MexX-MexY-OprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:2242–2246. doi:10.1128/AAC.44.9.2242-2246.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kai T, Tateda K, Kimura S, Ishii Y, Ito H, Yoshida H, Kimura T, Yamaguchi K (2009) A low concentration of azithromycin inhibits the mRNA expression of N-acyl homoserine lactone synthesis enzymes, upstream of lasI or rhlI, in Pseudomonas aeruginosa. Pulm Pharmacol Ther 22:483–486. doi:10.1016/j.pupt.2009.04.004

    Article  CAS  PubMed  Google Scholar 

  101. Roca A, Rodriguez-Herva JJ, Duque E, Ramos JL (2008) Physiological responses of Pseudomonas putida to formaldehyde during detoxification. Microb Biotechnol 1:158–169. doi:10.1111/j.1751-7915.2007.00014.x

    Article  CAS  PubMed  Google Scholar 

  102. Lee LJ, Barrett JA, Poole RK (2005) Genome-wide transcriptional response of chemostat-cultured Escherichia coli to zinc. J Bacteriol 187:1124–1134. doi:10.1128/JB.187.3.1124-1134.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kus JV, Gebremedhin A, Dang V, Tran SL, Serbanescu A, Barnett Foster D (2011) Bile salts induce resistance to polymyxin in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 193:4509–4515. doi:10.1128/JB.00200-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cox SD, Mann CM, Markham JL, Bell HC, Gustafson JE, Warmington JR, Wyllie SG (2000) The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 88:170–175. doi:10.1046/j.1365-2672.2000.00943.x

    Article  CAS  PubMed  Google Scholar 

  105. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B et al (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198:693–704. doi:10.1084/jem.20030846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Murugasu-Oei B, Tay A, Dick T (1999) Upregulation of stress response genes and ABC transporters in anaerobic stationary-phase Mycobacterium smegmatis. Mol Gen Genet 262:677–682. doi:10.1007/s004380051130

    Article  CAS  PubMed  Google Scholar 

  107. Poole K (2014) Stress responses as determinants of antimicrobial resistance in Pseudomonas aeruginosa: multidrug efflux and more. Can J Microbiol 60:783–791. doi:10.1139/cjm-2014-0666

    Article  CAS  PubMed  Google Scholar 

  108. Poole K (2012) Bacterial stress responses as determinants of antimicrobial resistance. J Antimicrob Chemother 67:2069–2089. doi:10.1093/jac/dks196

    Article  CAS  PubMed  Google Scholar 

  109. Poole K (2012) Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol 20:227–234. doi:10.1016/j.tim.2012.02.004

    Google Scholar 

  110. Amaral L, Fanning S, Pagès JM (2011) Efflux pumps of gram-negative bacteria: genetic responses to stress and the modulation of their activity by pH, inhibitors, and phenothiazines. Adv Enzymol Relat Areas Mol Biol 77:61–108. doi:10.1002/9780470920541.ch2

    Google Scholar 

  111. Poole K (2007) Efflux pumps as antimicrobial resistance mechanisms. Ann Med 39:162–176. doi:10.1080/07853890701195262

    Article  CAS  PubMed  Google Scholar 

  112. Poole K (2012) Efflux-mediated antimicrobial resistance. In: Dougherty TJ, Pucci MJ (eds) Antibiotic discovery and development. Springer, New York, pp 349–395. doi:10.1007/978-1-4614-1400-1_10

    Chapter  Google Scholar 

  113. Sánchez MB, Hernández A, Martínez JL (2009) Stenotrophomonas maltophilia drug resistance. Future Microbiol 4:655–660. doi:10.2217/fmb.09.45

    Article  PubMed  Google Scholar 

  114. Schweizer HP (2012) Mechanisms of antibiotic resistance in Burkholderia pseudomallei: implications for treatment of melioidosis. Future Microbiol 7:1389–1399. doi:10.2217/fmb.12.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11:443–454. doi:10.1038/nrmicro3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Miller PF, Sulavik MC (1996) Overlaps and parallels in the regulation of intrinsic multiple-antibiotic resistance in Esherichia coli. Mol Microbiol 21:441–448. doi:10.1111/j.1365-2958.1996.tb02553.x

    Article  CAS  PubMed  Google Scholar 

  117. Lu C, Bentley WE, Rao G (2003) Comparisons of oxidative stress response genes in aerobic Escherichia coli fermentations. Biotechnol Bioeng 83:864–870. doi:10.1002/bit.10732

    Article  CAS  PubMed  Google Scholar 

  118. Demple B (1996) Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon-a review. Gene 179:53–57. doi:10.1016/S0378-1119(96)00329-0

    Article  CAS  PubMed  Google Scholar 

  119. Hartog E, Ben Shalom L, Shachar D, Matthews KR, Yaron S (2008) Regulation of marA, soxS, rob, acrAB and micF in Salmonella enterica serovar Typhimurium. Microbiol Immunol 52:565–574. doi:10.1111/j.1348-0421.2008.00075.x

    Article  CAS  PubMed  Google Scholar 

  120. Oethinger M, Podglajen I, Kern WV, Levy SB (1998) Overexpression of the marA or soxS regulatory gene in clinical topoisomerase mutants of Escherichia coli. Antimicrob Agents Chemother 42:2089–2094

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Webber MA, Piddock LJ (2001) Absence of mutations in marRAB or soxRS in acrB-overexpressing fluoroquinolone-resistant clinical and veterinary isolates of Escherichia coli. Antimicrob Agents Chemother 45:1550–1552. doi:10.1128/AAC.45.5.1550-1552.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Koutsolioutsou A, Peña-Llopis S, Demple B (2005) Constitutive soxR mutations contribute to multiple-antibiotic resistance in clinical Escherichia coli isolates. Antimicrob Agents Chemother 49:2746–2752. doi:10.1128/AAC.49.7.2746-2752.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Koutsolioutsou A, Martins EA, White DG, Levy SB, Demple B (2001) A soxRS-constitutive mutation contributing to antibiotic resistance in a clinical isolate of Salmonella enterica (serovar Typhimurium). Antimicrob Agents Chemother 45:38–43. doi:10.1128/AAC.45.1.38-43.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fabrega A, Martin RG, Rosner JL, Tavio MM, Vila J (2010) Constitutive SoxS expression in a fluoroquinolone-resistant strain with a truncated SoxR protein and identification of a new member of the marA-soxS-rob regulon, mdtG. Antimicrob Agents Chemother 54:1218–1225. doi:10.1128/AAC.00944-09

    Article  CAS  PubMed  Google Scholar 

  125. O’Regan E, Quinn T, Pagès JM, McCusker M, Piddock L, Fanning S (2009) Multiple regulatory pathways associated with high-level ciprofloxacin and multidrug resistance in Salmonella enterica serovar Enteritidis: involvement of RamA and other global regulators. Antimicrob Agents Chemother 53:1080–1087. doi:10.1128/AAC.01005-08

    Google Scholar 

  126. Kehrenberg C, Cloeckaert A, Klein G, Schwarz S (2009) Decreased fluoroquinolone susceptibility in mutants of Salmonella serovars other than Typhimurium: detection of novel mutations involved in modulated expression of ramA and soxS. J Antimicrob Chemother 64:1175–1180. doi:10.1093/jac/dkp347

    Article  CAS  PubMed  Google Scholar 

  127. Dubbs JM, Mongkolsuk S (2012) Peroxide-sensing transcriptional regulators in bacteria. J Bacteriol 194:5495–5503. doi:10.1128/jb.00304-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hennequin C, Forestier C (2009) oxyR, a LysR-type regulator involved in Klebsiella pneumoniae mucosal and abiotic colonization. Infect Immun 77:5449–5457. doi:10.1128/iai.00837-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hwang S, Kim M, Ryu S, Jeon B (2011) Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni. PLoS One 6:e22300. doi:10.1371/journal.pone.0022300

    Google Scholar 

  130. Chang W, Small DA, Toghrol F, Bentley WE (2005) Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide. BMC Genomics 6:115. doi:10.1186/1471-2164-6-115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Jassem AN, Forbes CM, Speert DP (2014) Investigation of aminoglycoside resistance inducing conditions and a putative AmrAB-OprM efflux system in Burkholderia vietnamiensis. Ann Clin Microbiol Antimicrob 13:2. doi:10.1186/1476-0711-13-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Lin YT, Huang YW, Chen SJ, Chang CW, Yang TC (2015) SmeYZ efflux pump of Stenotrophomonas maltophilia contributes to drug resistance, virulence-related characteristics, and virulence to mice. Antimicrob Agents Chemother 59:4067–4073. doi:10.1128/aac.00372-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gould VC, Okazaki A, Avison MB (2013) Coordinate hyperproduction of SmeZ and SmeJK efflux pumps extends drug resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 57:655–657. doi:10.1128/AAC.01020-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Crossman LC, Gould VC, Dow JM, Vernikos GS, Okazaki A, Sebaihia M, Saunders D, Arrowsmith C et al (2008) The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 9:R74. doi:10.1186/gb-2008-9-4-r74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Silva PE, Bigi F, de La Paz SM, Romano MI, Martin C, Cataldi A, Ainsa JA (2001) Characterization of P55, a multidrug efflux pump in Mycobacterium bovis and Mycobacterium tuberculosis. Antimicrob Agents Chemother 45:800–804. doi:10.1128/AAC.45.3.800-804.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li X-Z, Zhang L, Nikaido H (2004) Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 48:2415–2423. doi:10.1128/AAC.48.7.2415-2423.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Poole RK (2005) Nitric oxide and nitrosative stress tolerance in bacteria. Biochem Soc Trans 33:176–180. doi:10.1042/BST0330176

    Article  CAS  PubMed  Google Scholar 

  138. Sobel ML, Poole K, Neshat S (2005) Mutations in PA2491 (mexS) promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa. J Bacteriol 187:1246–1253. doi:10.1128/JB.187.4.1246-1253.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tian ZX, Fargier E, Mac AM, Adams C, Wang YP, O’Gara F (2009) Transcriptome profiling defines a novel regulon modulated by the LysR-type transcriptional regulator MexT in Pseudomonas aeruginosa. Nucleic Acids Res 37:7546–7559. doi:10.1093/nar/gkp828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fargier E, Mac Aogain M, Mooij MJ, Woods DF, Morrissey JP, Dobson AD, Adams C, O’Gara F (2012) MexT functions as a redox-responsive regulator modulating disulfide stress resistance in Pseudomonas aeruginosa. J Bacteriol 194:3502–3511. doi:10.1128/JB.06632-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Frawley ER, Crouch ML, Bingham-Ramos LK, Robbins HF, Wang W, Wright GD, Fang FC (2013) Iron and citrate export by a major facilitator superfamily pump regulates metabolism and stress resistance in Salmonella Typhimurium. Proc Natl Acad Sci U S A 110:12054–12059. doi:10.1073/pnas.1218274110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Appia-Ayme C, Patrick E, Sullivan MJ, Alston MJ, Field SJ, AbuOun M, Anjum MF, Rowley G (2011) Novel inducers of the envelope stress response BaeSR in Salmonella Typhimurium: BaeR is critically required for tungstate waste disposal. PLoS One 6:e23713. doi:10.1371/journal.pone.0023713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Nishino K, Yamada J, Hirakawa H, Hirata T, Yamaguchi A (2003) Roles of TolC-dependent multidrug transporters of Escherichia coli in resistance to ß-lactams. Antimicrob Agents Chemother 47:3030–3033. doi:10.1128/AAC.47.9.3030-3033.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Baranova N, Nikaido H (2002) The baeSR two-component regulatory system activates transcription of the yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate. J Bacteriol 184:4168–4176. doi:10.1128/JB.184.15.4168-4176.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nagakubo S, Nishino K, Hirata T, Yamaguchi A (2002) The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J Bacteriol 184:4161–4167. doi:10.1128/JB.184.15.4161-4167.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hirakawa H, Nishino K, Yamada J, Hirata T, Yamaguchi A (2003) ß-Lactam resistance modulated by the overexpression of response regulators of two-component signal transduction systems in Escherichia coli. J Antimicrob Chemother 52:576–582. doi:10.1093/jac/dkg406

    Article  CAS  PubMed  Google Scholar 

  147. Raivio TL (2014) Everything old is new again: an update on current research on the Cpx envelope stress response. Biochim Biophys Acta 1843:1529–1541. doi:10.1016/j.bbamcr.2013.10.018

    Article  CAS  PubMed  Google Scholar 

  148. Krahn T, Gilmour C, Tilak J, Fraud S, Kerr N, Lau CH, Poole K (2012) Determinants of intrinsic aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 56:5591–5602. doi:10.1128/aac.01446-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lee S, Hinz A, Bauerle E, Angermeyer A, Juhaszova K, Kaneko Y, Singh PK, Manoil C (2009) Targeting a bacterial stress response to enhance antibiotic action. Proc Natl Acad Sci U S A 106:14570–14575. doi:10.1073/pnas.0903619106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Aires JR, Köhler T, Nikaido H, Plésiat P (1999) Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 43:2624–2628

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Kolar SL, Nagarajan V, Oszmiana A, Rivera FE, Miller HK, Davenport JE, Riordan JT, Potempa J et al (2011) NsaRS is a cell-envelope-stress-sensing two-component system of Staphylococcus aureus. Microbiology 157:2206–2219. doi:10.1099/mic.0.049692-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Muthaiyan A, Silverman JA, Jayaswal RK, Wilkinson BJ (2008) Transcriptional profiling reveals that daptomycin induces the Staphylococcus aureus cell wall stress stimulon and genes responsive to membrane depolarization. Antimicrob Agents Chemother 52:980–990. doi:10.1128/aac.01121-07

    Article  CAS  PubMed  Google Scholar 

  153. Kawada-Matsuo M, Yoshida Y, Zendo T, Nagao J, Oogai Y, Nakamura Y, Sonomoto K, Nakamura N et al (2013) Three distinct two-component systems are involved in resistance to the class I bacteriocins, Nukacin ISK-1 and nisin A, in Staphylococcus aureus. PLoS One 8:e69455. doi:10.1371/journal.pone.0069455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Blake KL, Randall CP, O’Neill AJ (2011) In vitro studies indicate a high resistance potential for the lantibiotic nisin in Staphylococcus aureus and define a genetic basis for nisin resistance. Antimicrob Agents Chemother 55:2362–2368. doi:10.1128/AAC.01077-10

    Google Scholar 

  155. Pietiainen M, Francois P, Hyyrylainen HL, Tangomo M, Sass V, Sahl HG, Schrenzel J, Kontinen VP (2009) Transcriptome analysis of the responses of Staphylococcus aureus to antimicrobial peptides and characterization of the roles of vraDE and vraSR in antimicrobial resistance. BMC Genomics 10:429. doi:10.1186/1471-2164-10-429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Yang SJ, Bayer AS, Mishra NN, Meehl M, Ledala N, Yeaman MR, Xiong YQ, Cheung AL (2012) The Staphylococcus aureus two-component regulatory system, GraRS, senses and confers resistance to selected cationic antimicrobial peptides. Infect Immun 80:74–81. doi:10.1128/IAI.05669-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Fernandez L, Gooderham WJ, Bains M, McPhee JB, Wiegand I, Hancock RE (2010) Adaptive resistance to the “last hope” antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS. Antimicrob Agents Chemother 54:3372–3382. doi:10.1128/AAC.00242-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Guenard S, Muller C, Monlezun L, Benas P, Broutin I, Jeannot K, Plesiat P (2014) Multiple mutations lead to MexXY-OprM-dependent aminoglycoside resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 58:221–228. doi:10.1128/aac.01252-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Ruiz N, Silhavy TJ (2005) Sensing external stress: watchdogs of the Escherichia coli cell envelope. Curr Opin Microbiol 8:122–126. doi:10.1016/j.mib.2005.02.013

    Article  CAS  PubMed  Google Scholar 

  160. Ades SE (2008) Regulation by destruction: design of the σE envelope stress response. Curr Opin Microbiol 11:535–540. doi:10.1016/j.mib.2008.10.004

    Article  CAS  PubMed  Google Scholar 

  161. Yu H, Schurr MJ, Deretic V (1995) Functional equivalence of Escherichia coli σE and Pseudomonas aeruginosa AlgU: E. coli rpoE restores mucoidy and reduces sensitivity to reactive oxygen intermediates in algU mutants of P. aeruginosa. J Bacteriol 177:3259–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Stickland HG, Davenport PW, Lilley KS, Griffin JL, Welch M (2010) Mutation of nfxB causes global changes in the physiology and metabolism of Pseudomonas aeruginosa. J Proteome Res 9:2957–2967. doi:10.1021/pr9011415

    Article  CAS  PubMed  Google Scholar 

  163. Merritt ME, Donaldson JR (2009) Effect of bile salts on the DNA and membrane integrity of enteric bacteria. J Med Microbiol 58:1533–1541. doi:10.1099/jmm.0.014092-0

    Article  CAS  PubMed  Google Scholar 

  164. Thanassi DG, Cheng LW, Nikaido H (1997) Active efflux of bile salts in Escherichia coli. J Bacteriol 179:2512–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE (1995) Genes acrA and acrB encode a stress-induced system of Escherichia coli. Mol Microbiol 16:45–55. doi:10.1111/j.1365-2958.1995.tb02390.x

    Article  CAS  PubMed  Google Scholar 

  166. Lin J, Sahin O, Michel LO, Zhang Q (2003) Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni. Infect Immun 71:4250–4259. doi:10.1128/IAI.71.8.4250-4259.2003

    Google Scholar 

  167. Holdsworth SR, Law CJ (2012) Functional and biochemical characterisation of the Escherichia coli major facilitator superfamily multidrug transporter MdtM. Biochimie 94:1334–1346. doi:10.1016/j.biochi.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  168. Holdsworth SR, Law CJ (2013) The major facilitator superfamily transporter MdtM contributes to the intrinsic resistance of Escherichia coli to quaternary ammonium compounds. J Antimicrob Chemother 68:831–839. doi:10.1093/jac/dks491

    Article  CAS  PubMed  Google Scholar 

  169. Nishino K, Yamaguchi A (2001) Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 183:5803–5812. doi:10.1128/JB.183.20.5803-5812.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Paul S, Alegre KO, Holdsworth SR, Rice M, Brown JA, McVeigh P, Kelly SM, Law CJ (2014) A single-component multidrug transporter of the major facilitator superfamily is part of a network that protects Escherichia coli from bile salt stress. Mol Microbiol 92:872–884. doi:10.1111/mmi.12597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gilbert P, Moore LE (2005) Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol 99:703–715. doi:10.1111/j.1365-2672.2005.02664.x

    Article  CAS  PubMed  Google Scholar 

  172. Bazzini S, Udine C, Sass A, Pasca MR, Longo F, Emiliani G, Fondi M, Perrin E et al (2011) Deciphering the role of RND efflux transporters in Burkholderia cenocepacia. PLoS One 6:e18902. doi:10.1371/journal.pone.0018902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rajamohan G, Srinivasan VB, Gebreyes WA (2010) Novel role of Acinetobacter baumannii RND efflux transporters in mediating decreased susceptibility to biocides. J Antimicrob Chemother 65:228–232. doi:10.1093/jac/dkp427

    Article  CAS  PubMed  Google Scholar 

  174. O’Neill AJ, Miller K, Oliva B, Chopra I (2004) Comparison of assays for detection of agents causing membrane damage in Staphylococcus aureus. J Antimicrob Chemother 54:1127–1129. doi:10.1093/jac/dkh476

    Article  PubMed  Google Scholar 

  175. Hernández A, Ruiz FM, Romero A, Martínez JL (2011) The binding of triclosan to SmeT, the repressor of the multidrug efflux pump SmeDEF, induces antibiotic resistance in Stenotrophomonas maltophilia. PLoS Pathog 7:e1002103. doi:10.1371/journal.ppat.1002103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Desbois AP, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85:1629–1642. doi:10.1007/s00253-009-2355-3

    Article  CAS  PubMed  Google Scholar 

  177. Parsons JB, Yao J, Frank MW, Jackson P, Rock CO (2012) Membrane disruption by antimicrobial fatty acids releases low-molecular-weight proteins from Staphylococcus aureus. J Bacteriol 194:5294–5304. doi:10.1128/jb.00743-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kenny JG, Ward D, Josefsson E, Jonsson IM, Hinds J, Rees HH, Lindsay JA, Tarkowski A et al (2009) The Staphylococcus aureus response to unsaturated long chain free fatty acids: survival mechanisms and virulence implications. PLoS One 4:e4344. doi:10.1371/journal.pone.0004344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Truong-Bolduc QC, Dunman PM, Strahilevitz J, Projan SJ, Hooper DC (2005) MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. J Bacteriol 187:2395–2405. doi:10.1128/JB.187.7.2395-2405.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Huang J, O’Toole PW, Shen W, Amrine-Madsen H, Jiang X, Lobo N, Palmer LM, Voelker L et al (2004) Novel chromosomally encoded multidrug efflux transporter MdeA in Staphylococcus aureus. Antimicrob Agents Chemother 48:909–917. doi:10.1128/AAC.48.3.909-917.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Xiao Q, Vakulenko S, Chang M, Mobashery S (2014) Mutations in mmpL and in the cell wall stress stimulon contribute to resistance to oxadiazole antibiotics in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 58:5841–5847. doi:10.1128/aac.03501-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Shryock TR, Kapral FA (1992) The production of bactericidal fatty acids from glycerides in staphylococcal abscesses. J Med Microbiol 36:288–292. doi:10.1099/00222615-36-4-288

    Article  CAS  PubMed  Google Scholar 

  183. Ding Y, Onodera Y, Lee JC, Hooper DC (2008) NorB, an efflux pump in Staphylococcus aureus strain MW2, contributes to bacterial fitness in abscesses. J Bacteriol 190:7123–7129. doi:10.1128/jb.00655-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511. doi:10.1128/cmr.00056-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Dixon RA, Chopra I (1986) Polymyxin B and polymyxin B nonapeptide alter cytoplasmic membrane permeability in Escherichia coli. J Antimicrob Chemother 18:557–563. doi:10.1093/jac/18.5.557

    Article  CAS  PubMed  Google Scholar 

  186. Dixon RA, Chopra I (1986) Leakage of periplasmic proteins from Escherichia coli mediated by polymyxin B nonapeptide. Antimicrob Agents Chemother 29:781–788. doi:10.1128/AAC.29.5.781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Falla TJ, Karunaratne DN, Hancock RE (1996) Mode of action of the antimicrobial peptide indolicidin. J Biol Chem 271:19298–19303. doi:10.1074/jbc.271.32.19298

    Article  CAS  PubMed  Google Scholar 

  188. Bourbon C, Bry C, Roggemans C, Soulard C, Thizon C, Garbay B (2008) Use of a real-time polymerase chain reaction thermocycler to study bacterial cell permeabilization by antimicrobial peptides. Anal Biochem 381:279–281. doi:10.1016/j.ab.2008.07.005

    Article  CAS  PubMed  Google Scholar 

  189. Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T (2000) Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:3322–3327. doi:10.1128/AAC.44.12.3322-3327.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Schnaitman CA (1971) Solubilization of the cytoplasmic membrane of Escherichia coli by Triton X-100. J Bacteriol 108:545–552

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Ohneck EA, Zalucki YM, Johnson PJ, Dhulipala V, Golparian D, Unemo M, Jerse AE, Shafer WM (2011) A novel mechanism of high-level, broad-spectrum antibiotic resistance caused by a single base pair change in Neisseria gonorrhoeae. mBio 2:e00187–11. doi:10.1128/mBio.00187-11

  192. Warner DM, Shafer WM, Jerse AE (2008) Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE Efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol Microbiol 70:462–478. doi:10.1111/j.1365-2958.2008.06424.x

    Google Scholar 

  193. de Smet MJ, Kingma J, Witholt B (1978) The effect of toluene on the structure and permeability of the outer and cytoplasmic membranes of Escherichia coli. Biochim Biophys Acta 506:64–80. doi:10.1016/0005-2736(78)90435-2

    Article  PubMed  Google Scholar 

  194. Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Rodriguez-Herva JJ, Garcia V, Hurtado A, Segura A, Ramos JL (2007) The ttgGHI solvent efflux pump operon of Pseudomonas putida DOT-T1E is located on a large self-transmissible plasmid. Environ Microbiol 9:1550–1561. doi:10.1111/j.1462-2920.2007.01276.x

    Article  CAS  PubMed  Google Scholar 

  196. Dalebroux ZD, Swanson MS (2012) ppGpp: magic beyond RNA polymerase. Nat Rev Microbiol 10:203–212. doi:10.1038/nrmicro2720

    Article  CAS  PubMed  Google Scholar 

  197. Sharma UK, Chatterji D (2010) Transcriptional switching in Escherichia coli during stress and starvation by modulation of sigma activity. FEMS Microbiol Rev 34:646–657. doi:10.1111/j.1574-6976.2010.00223.x

    Article  CAS  PubMed  Google Scholar 

  198. Chatterji D, Ojha AK (2001) Revisiting the stringent response, ppGpp and starvation signaling. Curr Opin Microbiol 4:160–165. doi:10.1016/S1369-5274(00)00182-X

    Article  CAS  PubMed  Google Scholar 

  199. Wu J, Long Q, Xie J (2010) (p)ppGpp and drug resistance. J Cell Physiol 224:300–304. doi:10.1002/jcp.22158

    Article  CAS  PubMed  Google Scholar 

  200. Ghosh S, Cremers CM, Jakob U, Love NG (2011) Chlorinated phenols control the expression of the multi-drug resistance efflux pump MexAB-OprM in Pseudomonas aeruginosa by activating NalC. Mol Microbiol 79:1547–1556. doi:10.1111/j.1365-2958.2011.07544.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Starr LM, Fruci M, Poole K (2012) Pentachlorophenoln induction of the Pseudomonas aeruginosa mexAB-oprM efflux operon: involvement of repressors NalC and MexR and the antirepressor ArmR. PLoS One 7:e32684. doi:10.1371/journal.pone.0032684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Adams KN, Szumowski JD, Ramakrishnan L (2014) Verapamil, and its metabolite norverapamil, inhibit macrophage-induced, bacterial efflux pump-mediated tolerance to multiple anti-tubercular drugs. J Infect Dis 210:456–466. doi:10.1093/infdis/jiu095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Viveiros M, Portugal I, Bettencourt R, Victor TC, Jordaan AM, Leandro C, Ordway D, Amaral L (2002) Isoniazid-induced transient high-level resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 46:2804–2810. doi:10.1128/AAC.46.9.2804-2810.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Colangeli R, Helb D, Sridharan S, Sun J, Varma-Basil M, Hazbon MH, Harbacheuski R, Megjugorac NJ et al (2005) The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol. Mol Microbiol 55:1829–1840. doi:10.1111/j.1365-2958.2005.04510.x

    Article  CAS  PubMed  Google Scholar 

  205. Li G, Zhang J, Guo Q, Jiang Y, Wei J, Zhao LL, Zhao X, Lu J et al (2015) Efflux pump gene expression in multidrug-resistant Mycobacterium tuberculosis clinical isolates. PLoS One 10:e0119013. doi:10.1371/journal.pone.0119013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Aínsa JA, Blokpoel MC, Otal I, Young DB, De Smet KA, Martin C (1998) Molecular cloning and characterization of tap, a putative multidrug efflux pump present in Mycobacterium fortuitum and Mycobacterium tuberculosis. J Bacteriol 180:5836–5843

    PubMed  PubMed Central  Google Scholar 

  207. De Rossi E, Arrigo P, Bellinzoni M, Silva PA, Martin C, Ainsa JA, Guglierame P, Riccardi G (2002) The multidrug transporters belonging to major facilitator superfamily in Mycobacterium tuberculosis. Mol Med 8:714–724

    PubMed  PubMed Central  Google Scholar 

  208. De Rossi E, Branzoni M, Cantoni R, Milano A, Riccardi G, Ciferri O (1998) mmr, a Mycobacterium tuberculosis gene conferring resistance to small cationic dyes and inhibitors. J Bacteriol 180:6068–6071

    PubMed  PubMed Central  Google Scholar 

  209. Pasca MR, Guglierame P, De Rossi E, Zara F, Riccardi G (2005) mmpL7 gene of Mycobacterium tuberculosis is responsible for isoniazid efflux in Mycobacterium smegmatis. Antimicrob Agents Chemother 49:4775–4777. doi:10.1128/AAC.49.11.4775-4777.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Gupta AK, Reddy VP, Lavania M, Chauhan DS, Venkatesan K, Sharma VD, Tyagi AK, Katoch VM (2010) jefA (Rv2459), a drug efflux gene in Mycobacterium tuberculosis confers resistance to isoniazid & ethambutol. Indian J Med Res 132:176–188

    CAS  PubMed  Google Scholar 

  211. Rickman KA, Swancutt KL, Mezyk SP, Kiddle JJ (2013) Isoniazid: radical-induced oxidation and reduction chemistry. Bioorg Med Chem Lett 23:3096–3100. doi:10.1016/j.bmcl.2013.03.006

    Article  CAS  PubMed  Google Scholar 

  212. Van Zyl JM, Van der Walt BJ (1994) Apparent hydroxyl radical generation without transition metal catalysis and tyrosine nitration during oxidation of the anti-tubercular drug, isonicotinic acid hydrazide. Biochem Pharmacol 48:2033–2042. doi:10.1016/0006-2952(94)90502-9

    Article  PubMed  Google Scholar 

  213. Timmins GS, Master S, Rusnak F, Deretic V (2004) Nitric oxide generated from isoniazid activation by KatG: source of nitric oxide and activity against Mycobacterium tuberculosis. Antimicrob Agents Chemother 48:3006–3009. doi:10.1128/aac.48.8.3006-3009.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Siddiqi N, Das R, Pathak N, Banerjee S, Ahmed N, Katoch VM, Hasnain SE (2004) Mycobacterium tuberculosis isolate with a distinct genomic identity overexpresses a Tap-like efflux pump. Infection 32:109–111. doi:10.1007/s15010-004-3097-x

    Google Scholar 

  215. Braibant M, Gilot P, Content J (2000) The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol Rev 24:449–467. doi:10.1111/j.1574-6976.2000.tb00550.x

    Article  CAS  PubMed  Google Scholar 

  216. Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, Langhorne MH, Anderson SW, Towell JA et al (2000) A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405:962–966. doi:10.1038/35016103

    Article  CAS  PubMed  Google Scholar 

  217. Marrer E, Schad K, Satoh AT, Page MG, Johnson MM, Piddock LJ (2006) Involvement of the putative ATP-dependent efflux proteins PatA and PatB in fluoroquinolone resistance of a multidrug-resistant mutant of Streptococcus pneumoniae. Antimicrob Agents Chemother 50:685–693. doi:10.1128/AAC.50.2.685-693.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Lee EW, Huda MN, Kuroda T, Mizushima T, Tsuchiya T (2003) EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis. Antimicrob Agents Chemother 47:3733–3738. doi:10.1128/AAC.47.12.3733-3738.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Lupien A, Billal DS, Fani F, Soualhine H, Zhanel GG, Leprohon P, Ouellette M (2013) Genomic characterization of ciprofloxacin resistance in a laboratory-derived mutant and a clinical isolate of Streptococcus pneumoniae. Antimicrob Agents Chemother 57:4911–4919. doi:10.1128/aac.00418-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Avrain L, Garvey M, Mesaros N, Glupczynski Y, Mingeot-Leclercq MP, Piddock LJ, Tulkens PM, Vanhoof R et al (2007) Selection of quinolone resistance in Streptococcus pneumoniae exposed in vitro to subinhibitory drug concentrations. J Antimicrob Chemother 60:965–972. doi:10.1093/jac/dkm292

    Google Scholar 

  221. Garvey MI, Baylay AJ, Wong RL, Piddock LJ (2011) Overexpression of patA and patB, which encode ABC transporters, is associated with fluoroquinolone resistance in clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 55:190–196. doi:10.1128/AAC.00672-10

    Article  CAS  PubMed  Google Scholar 

  222. Baylay AJ, Piddock LJ (2015) Clinically relevant fluoroquinolone resistance due to constitutive overexpression of the PatAB ABC transporter in Streptococcus pneumoniae is conferred by disruption of a transcriptional attenuator. J Antimicrob Chemother 70:670–679. doi:10.1093/jac/dku449

    Article  CAS  PubMed  Google Scholar 

  223. Lupien A, Gingras H, Bergeron MG, Leprohon P, Ouellette M (2015) Multiple mutations and increased RNA expression in tetracycline-resistant Streptococcus pneumoniae as determined by genome-wide DNA and mRNA sequencing. J Antimicrob Chemother 70:1946–1959. doi:10.1093/jac/dkv060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Marrer E, Satoh AT, Johnson MM, Piddock LJ, Page MG (2006) Global transcriptome analysis of the responses of a fluoroquinolone-resistant Streptococcus pneumoniae mutant and its parent to ciprofloxacin. Antimicrob Agents Chemother 50:269–278. doi:10.1128/aac.50.1.269-278.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Jeannot K, Sobel ML, El Garch F, Poole K, Plésiat P (2005) Induction of the MexXY efflux pump in Pseudomonas aeruginosa is dependent on drug-ribosome interaction. J Bacteriol 187:5341–5346. doi:10.1128/JB.187.15.5341-5346.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Dukan S, Farewell A, Ballesteros M, Taddei F, Radman M, Nystrom T (2000) Protein oxidation in response to increased transcriptional or translational errors. Proc Natl Acad Sci U S A 97:5746–5749. doi:10.1073/pnas.100422497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Köhler T, Michea-Hamzehpour M, Henze U, Gotoh N, Curty LK, Pechere JC (1997) Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol 23:345–354. doi:10.1046/j.1365-2958.1997.2281594.x

    Article  PubMed  Google Scholar 

  228. Singh K, Senadheera DB, Levesque CM, Cvitkovitch DG (2015) The copYAZ operon functions in copper efflux, biofilm formation, genetic transformation, and stress tolerance in Streptococcus mutans. J Bacteriol 197:2545–2557. doi:10.1128/JB.02433-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Turner AG, Ong CL, Gillen CM, Davies MR, West NP, McEwan AG, Walker MJ (2015) Manganese homeostasis in group A Streptococcus is critical for resistance to oxidative stress and virulence. mBio 6:e00278–15. doi:10.1128/mBio.00278-15

  230. Song S, Hwang S, Lee S, Ha NC, Lee K (2014) Interaction mediated by the putative tip regions of MdsA and MdsC in the formation of a Salmonella-specific tripartite efflux pump. PLoS One 9:e100881. doi:10.1371/journal.pone.0100881

    Google Scholar 

  231. Takemura R, Werb Z (1984) Secretory products of macrophages and their physiological functions. Am J Physiol 246:C1–C9

    CAS  PubMed  Google Scholar 

  232. Root RK, Cohen MS (1981) The microbicidal mechanisms of human neutrophils and eosinophils. Rev Infect Dis 3:565–598. doi:10.1093/clinids/3.3.565

    Article  CAS  PubMed  Google Scholar 

  233. Bogdan C, Rollinghoff M, Diefenbach A (2000) The role of nitric oxide in innate immunity. Immunol Rev 173:17–26. doi:10.1034/j.1600-065X.2000.917307.x

    Article  CAS  PubMed  Google Scholar 

  234. MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Ann Rev Immunol 15:323–350. doi:10.1146/annurev.immunol.15.1.323

    Article  CAS  Google Scholar 

  235. Thormar H, Hilmarsson H (2007) The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents. Chem Phys Lipids 150:1–11. doi:10.1016/j.chemphyslip.2007.06.220

    Article  CAS  PubMed  Google Scholar 

  236. Guani-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Teran LM (2010) Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunol 135:1–11. doi:10.1016/j.clim.2009.12.004

    Article  CAS  PubMed  Google Scholar 

  237. Poole K (2011) Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2:65. doi:10.3389/fmicb.2011.00065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, Miller SI, Ramsey BW et al (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103:8487–8492. doi:10.1073/pnas.0602138103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Marvig RL, Sommer LM, Molin S, Johansen HK (2014) Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat Genet 47:57–84. doi:10.1038/ng.3148

    Article  PubMed  CAS  Google Scholar 

  240. Poole K (2005) Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:479–487. doi:10.1128/AAC.49.2.479-487.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Pressler T (2011) Targeting airway inflammation in cystic fibrosis in children: past, present, and future. Paediatr Drugs 13:141–147. doi:10.2165/11588150-000000000-00000

    Article  PubMed  Google Scholar 

  242. Cohen-Cymberknoh M, Kerem E, Ferkol T, Elizur A (2013) Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications. Thorax 68:1157–1162. doi:10.1136/thoraxjnl-2013-203204

    Article  PubMed  Google Scholar 

  243. Son MS, Matthews WJ Jr, Kang Y, Nguyen DT, Hoang TT (2007) In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. Infect Immun 75:5313–5324. doi:10.1128/IAI.01807-06

    Google Scholar 

Download references

Acknowledgments

Research in the Poole laboratory on efflux and stress response determinants of antimicrobial resistance is supported by operating grants from Cystic Fibrosis Canada and the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Poole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Poole, K., Fruci, M. (2016). Antimicrobial Drug Efflux Systems as Components of Bacterial Stress Responses. In: Li, XZ., Elkins, C., Zgurskaya, H. (eds) Efflux-Mediated Antimicrobial Resistance in Bacteria. Adis, Cham. https://doi.org/10.1007/978-3-319-39658-3_26

Download citation

Publish with us

Policies and ethics