Skip to main content

Efflux Pumps in Mycobacteria: Antimicrobial Resistance, Physiological Functions, and Role in Pathogenicity

  • Chapter
  • First Online:
Efflux-Mediated Antimicrobial Resistance in Bacteria

Abstract

The emergence of multidrug and extensively drug-resistant tuberculosis represents a major threat to the control of the disease. Antimicrobial drug resistance in Mycobacterium tuberculosis is not merely a consequence of the occurrence of gene mutations in the drug targets but a balance between the acquisition of mutations and drug efflux. The low permeability of the mycobacterial cell wall acts synergistically with active drug efflux pumps, and this combined mechanism may particularly constitute the first step for the development of drug resistance. Besides drug efflux, efflux pumps also have physiological functions in the bacteria, and their expression is subjected to tight regulation in response to multiple environmental and physiological signals. Understanding the mechanisms underlying drug efflux, efflux pump regulation and their contribution for pathogenicity not only enables the development of more rapid and accurate tools for the guidance of antituberculosis therapy but also provides knowledge for the development of new therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nikaido H (2001) Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria. Semin Cell Dev Biol 12:215–223. doi:10.1006/scdb.2000.0247

    Article  CAS  PubMed  Google Scholar 

  2. Viveiros M, Leandro C, Amaral L (2003) Mycobacterial efflux pumps and chemotherapeutic implications. Int J Antimicrob Agents 22:274–278. doi:10.1016/S0924-8579(03)00208-5

    Article  CAS  PubMed  Google Scholar 

  3. De Rossi E, Ainsa JA, Riccardi G (2006) Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev 30:36–52. doi:10.1111/j.1574-6976.2005.00002.x

    Article  PubMed  CAS  Google Scholar 

  4. Louw GE, Warren RM, Gey van Pittius NC, McEvoy CR, Van Helden PD, Victor TC (2009) A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrob Agents Chemother 53:3181–3189. doi:10.1128/AAC.01577-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. da Silva PE, Von Groll A, Martin A, Palomino JC (2011) Efflux as a mechanism for drug resistance in Mycobacterium tuberculosis. FEMS Immunol Med Microbiol 63:1–9. doi:10.1111/j.1574-695X.2011.00831.x

    Article  PubMed  CAS  Google Scholar 

  6. Black PA, Warren RM, Louw GE, van Helden PD, Victor TC, Kana BD (2014) Energy metabolism and drug efflux in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:2491–2503. doi:10.1128/AAC.02293-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382–388. doi:10.1126/science.8153625

    Article  CAS  PubMed  Google Scholar 

  8. Niederweis M, Danilchanka O, Huff J, Hoffmann C, Engelhardt H (2010) Mycobacterial outer membranes: in search of proteins. Trends Microbiol 18:109–116. doi:10.1016/j.tim.2009.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sarathy JP, Dartois V, Lee EJ (2012) The role of transport mechanisms in Mycobacterium tuberculosis drug resistance and tolerance. Pharmaceuticals 5:1210–1235. doi:10.3390/ph5111210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Senaratne RH, Mobasheri H, Papavinasasundaram KG, Jenner P, Lea EJ, Draper P (1998) Expression of a gene for a porin-like protein of the OmpA family from Mycobacterium tuberculosis H37Rv. J Bacteriol 180:3541–3547

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Stahl C, Kubetzko S, Kaps I, Seeber S, Engelhardt H, Niederweis M (2001) MspA provides the main hydrophilic pathway through the cell wall of Mycobacterium smegmatis. Mol Microbiol 40:451–464. doi:10.1046/j.1365-2958.2001.02394.x

    Article  CAS  PubMed  Google Scholar 

  12. Lamrabet O, Ghigo E, Mege JL, Lepidi H, Nappez C, Raoult D, Drancourt M (2014) MspA-Mycobacterium tuberculosis-transformant with reduced virulence: the “unbirthday paradigm”. Microb Pathog 76:10–18. doi:10.1016/j.micpath.2014.08.003

    Article  PubMed  Google Scholar 

  13. Song H, Sandie R, Wang Y, Andrade-Navarro MA, Niederweis M (2008) Identification of outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis 88:526–544. doi:10.1016/j.tube.2008.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Siroy A, Mailaender C, Harder D, Koerber S, Wolschendorf F, Danilchanka O, Wang Y, Heinz C et al (2008) Rv1698 of Mycobacterium tuberculosis represents a new class of channel-forming outer membrane proteins. J Biol Chem 283:17827–17837. doi:10.1074/jbc.M800866200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Danilchanka O, Sun J, Pavlenok M, Maueroder C, Speer A, Siroy A, Marrero J, Trujillo C et al (2014) An outer membrane channel protein of Mycobacterium tuberculosis with exotoxin activity. Proc Natl Acad Sci U S A 111:6750–6755. doi:10.1073/pnas.1400136111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aínsa JA, Blokpoel MC, Otal I, Young DB, De Smet KA, Martin C (1998) Molecular cloning and characterization of Tap, a putative multidrug efflux pump present in Mycobacterium fortuitum and Mycobacterium tuberculosis. J Bacteriol 180:5836–5843

    PubMed  PubMed Central  Google Scholar 

  17. Silva PE, Bigi F, de la Paz Santangelo M, Romano MI, Martin C, Cataldi A, Ainsa JA (2001) Characterization of P55, a multidrug efflux pump in Mycobacterium bovis and Mycobacterium tuberculosis. Antimicrob Agents Chemother 45:800–804. doi:10.1128/AAC.45.3.800-804.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li X-Z, Nikaido H (2009) Efflux-mediated drug resistance in bacteria: an update. Drugs 69:1555–1623. doi:10.2165/11317030-000000000-00000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Viveiros M, Martins M, Rodrigues L, Machado D, Couto I, Ainsa J, Amaral L (2012) Inhibitors of mycobacterial efflux pumps as potential boosters for anti-tubercular drugs. Expert Rev Anti Infect Ther 10:983–998. doi:10.1586/eri.12.89

    Article  CAS  PubMed  Google Scholar 

  20. Viveiros M, Portugal I, Bettencourt R, Victor TC, Jordaan AM, Leandro C, Ordway D, Amaral L (2002) Isoniazid-induced transient high-level resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 46:2804–2810. doi:10.1128/AAC.46.9.2804-2810.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rodrigues L, Sampaio D, Couto I, Machado D, Kern WV, Amaral L, Viveiros M (2009) The role of efflux pumps in macrolide resistance in Mycobacterium avium complex. Int J Antimicrob Agents 34:529–533. doi:10.1016/j.ijantimicag.2009.07.010

    Article  CAS  PubMed  Google Scholar 

  22. Coelho T, Machado D, Couto I, Maschmann R, Ramos D, von Groll A, Rossetti ML, Silva PA et al (2015) Enhancement of antibiotic activity by efflux inhibitors against multidrug resistant Mycobacterium tuberculosis clinical isolates from Brazil. Front Microbiol 6:330. doi:10.3389/fmicb.2015.00330

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li X-Z, Plésiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28:337–418. doi:10.1128/CMR.00117-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gupta AK, Katoch VM, Chauhan DS, Sharma R, Singh M, Venkatesan K, Sharma VD (2010) Microarray analysis of efflux pump genes in multidrug-resistant Mycobacterium tuberculosis during stress induced by common anti-tuberculous drugs. Microb Drug Resist 16:21–28. doi:10.1089/mdr.2009.0054

    Article  CAS  PubMed  Google Scholar 

  25. Adams KN, Takaki K, Connolly LE, Wiedenhoft H, Winglee K, Humbert O, Edelstein PH, Cosma CL et al (2011) Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145:39–53. doi:10.1016/j.cell.2011.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schmalstieg AM, Srivastava S, Belkaya S, Deshpande D, Meek C, Leff R, van Oers NS, Gumbo T (2012) The antibiotic resistance arrow of time: efflux pump induction is a general first step in the evolution of mycobacterial drug resistance. Antimicrob Agents Chemother 56:4806–4815. doi:10.1128/AAC.05546-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Machado D, Couto I, Perdigao J, Rodrigues L, Portugal I, Baptista P, Veigas B, Amaral L et al (2012) Contribution of efflux to the emergence of isoniazid and multidrug resistance in Mycobacterium tuberculosis. PLoS One 7:e34538. doi:10.1371/journal.pone.0034538

    Google Scholar 

  28. Walter ND, Dolganov GM, Garcia BJ, Worodria W, Andama A, Musisi E, Ayakaka I, Van TT et al (2015) Transcriptional adaptation of drug-tolerant Mycobacterium tuberculosis during treatment of human tuberculosis. J Infect Dis 21:990–998. doi:10.1093/infdis/jiv149

    Article  Google Scholar 

  29. Webber MA, Piddock LJ (2003) The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 51:9–11. doi:10.1093/jac/dkg050

    Article  CAS  PubMed  Google Scholar 

  30. Martínez JL, Sánchez MB, Martínez-Solano L, Hernández A, Garmendia L, Fajardo A, Alvarez-Ortega C (2009) Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 33:430–449. doi:10.1111/j.1574-6976.2008.00157.x

    Article  PubMed  CAS  Google Scholar 

  31. Piddock LJ (2006) Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 19:382–402. doi:10.1128/CMR.19.2.382-402.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shlykov MA, Zheng WH, Wang E, Nguyen JD, Saier MH Jr (2013) Transmembrane molecular transporters facilitating export of molecules from cells and organelles. In: Yu EW, Zhang Q, Brown MH (eds) Microbial efflux pumps: current research. Caister Academic Press, Norfolk, pp 1–19

    Google Scholar 

  33. Braibant M, Gilot P, Content J (2000) The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol Rev 24:449–467. doi:10.1111/j.1574-6976.2000.tb00550.x

    Article  CAS  PubMed  Google Scholar 

  34. De Rossi E, Arrigo P, Bellinzoni M, Silva PA, Martin C, Ainsa JA, Guglierame P, Riccardi G (2002) The multidrug transporters belonging to major facilitator superfamily in Mycobacterium tuberculosis. Mol Med 8:714–724

    PubMed  PubMed Central  Google Scholar 

  35. Takiff HE, Cimino M, Musso MC, Weisbrod T, Martinez R, Delgado MB, Salazar L, Bloom BR et al (1996) Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacterium smegmatis. Proc Natl Acad Sci U S A 93:362–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De Rossi E, Blokpoel MC, Cantoni R, Branzoni M, Riccardi G, Young DB, De Smet KA, Ciferri O (1998) Molecular cloning and functional analysis of a novel tetracycline resistance determinant, tet(V), from Mycobacterium smegmatis. Antimicrob Agents Chemother 42:1931–1937

    PubMed  PubMed Central  Google Scholar 

  37. Montero C, Mateu G, Rodriguez R, Takiff H (2001) Intrinsic resistance of Mycobacterium smegmatis to fluoroquinolones may be influenced by new pentapeptide protein MfpA. Antimicrob Agents Chemother 45:3387–3392. doi:10.1128/AAC.45.12.3387-3392.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pasca MR, Buroni S, Riccardi G (2013) Mycobacterium tuberculosis drug efflux pumps: an update. In: Yu EW, Zhang Q, Brown MH (eds) Microbial efflux pumps: current research. Caister Academic Press, Norfolk, pp 143–162

    Google Scholar 

  39. Ren Q, Kang KH, Paulsen IT (2004) TransportDB: a relational database of cellular membrane transport systems. Nucleic Acids Res 32:D284–D288. doi:10.1093/nar/gkh016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Danilchanka O, Mailaender C, Niederweis M (2008) Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis. Antimicrob Agents Chemother 52:2503–2511. doi:10.1128/AAC.00298-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Choudhuri BS, Bhakta S, Barik R, Basu J, Kundu M, Chakrabarti P (2002) Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. Biochem J 367:279–285. doi:10.1042/bj20020615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pang Y, Lu J, Wang Y, Song Y, Wang S, Zhao Y (2013) Study of the rifampin monoresistance mechanism in Mycobacterium tuberculosis. Antimicrob Agents Chemother 57:893–900. doi:10.1128/AAC.01024-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Balganesh M, Kuruppath S, Marcel N, Sharma S, Nair A, Sharma U (2010) Rv1218c, an ABC transporter of Mycobacterium tuberculosis with implications in drug discovery. Antimicrob Agents Chemother 54:5167–5172. doi:10.1128/AAC.00610-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang K, Pei H, Huang B, Zhu X, Zhang J, Zhou B, Zhu L, Zhang Y et al (2013) The expression of ABC efflux pump, Rv1217c-Rv1218c, and its association with multidrug resistance of Mycobacterium tuberculosis in China. Curr Microbiol 66:222–226. doi:10.1007/s00284-012-0215-3

    Article  CAS  PubMed  Google Scholar 

  45. Dinesh N, Sharma S, Balganesh M (2013) Involvement of efflux pumps in the resistance to peptidoglycan synthesis inhibitors in Mycobacterium tuberculosis. Antimicrob Agents Chemother 57:1941–1943. doi:10.1128/AAC.01957-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hao P, Shi-Liang Z, Ju L, Ya-Xin D, Biao H, Xu W, Min-Tao H, Shou-Gang K et al (2011) The role of ABC efflux pump, Rv1456c-Rv1457c-Rv1458c, from Mycobacterium tuberculosis clinical isolates in China. Folia Microbiol 56:549–553. doi:10.1007/s12223-011-0080-7

    Article  CAS  Google Scholar 

  47. Domenech P, Kobayashi H, LeVier K, Walker GC, Barry CE 3rd (2009) BacA, an ABC transporter involved in maintenance of chronic murine infections with Mycobacterium tuberculosis. J Bacteriol 191:477–485. doi:10.1128/JB.01132-08

    Article  CAS  PubMed  Google Scholar 

  48. Jiang X, Zhang W, Zhang Y, Gao F, Lu C, Zhang X, Wang H (2008) Assessment of efflux pump gene expression in a clinical isolate Mycobacterium tuberculosis by real-time reverse transcription PCR. Microb Drug Resist 14:7–11. doi:10.1089/mdr.2008.0772

    Article  CAS  PubMed  Google Scholar 

  49. Spivey VL, Whalan RH, Hirst EM, Smerdon SJ, Buxton RS (2013) An attenuated mutant of the Rv1747 ATP-binding cassette transporter of Mycobacterium tuberculosis and a mutant of its cognate kinase, PknF, show increased expression of the efflux pump-related iniBAC operon. FEMS Microbiol Lett 347:107–115. doi:10.1111/1574-6968.12230

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pasca MR, Guglierame P, Arcesi F, Bellinzoni M, De Rossi E, Riccardi G (2004) Rv2686c-Rv2687c-Rv2688c, an ABC fluoroquinolone efflux pump in Mycobacterium tuberculosis. Antimicrob Agents Chemother 48:3175–3178. doi:10.1128/AAC.48.8.3175-3178.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Braibant M, Lefevre P, de Wit L, Peirs P, Ooms J, Huygen K, Andersen AB, Content J (1996) A Mycobacterium tuberculosis gene cluster encoding proteins of a phosphate transporter homologous to the Escherichia coli Pst system. Gene 176:171–176. doi:10.1016/0378-1119(96)00242-9

    Article  CAS  PubMed  Google Scholar 

  52. Lu J, Liu M, Wang Y, Pang Y, Zhao Z (2014) Mechanisms of fluoroquinolone monoresistance in Mycobacterium tuberculosis. FEMS Microbiol Lett 353:40–48. doi:10.1111/1574-6968.12401

    Article  CAS  PubMed  Google Scholar 

  53. Rodrigues L, Villellas C, Bailo R, Viveiros M, Ainsa JA (2013) Role of the Mmr efflux pump in drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 57:751–757. doi:10.1128/AAC.01482-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Rossi E, Branzoni M, Cantoni R, Milano A, Riccardi G, Ciferri O (1998) mmr, a Mycobacterium tuberculosis gene conferring resistance to small cationic dyes and inhibitors. J Bacteriol 180:6068–6071

    PubMed  PubMed Central  Google Scholar 

  55. Harris KK, Fay A, Yan HG, Kunwar P, Socci ND, Pottabathini N, Juventhala RR, Djaballah H et al (2014) Novel imidazoline antimicrobial scaffold that inhibits DNA replication with activity against mycobacteria and drug resistant Gram-positive cocci. ACS Chem Biol 9:2572–2583. doi:10.1021/cb500573z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Balganesh M, Dinesh N, Sharma S, Kuruppath S, Nair AV, Sharma U (2012) Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates. Antimicrob Agents Chemother 56:2643–2651. doi:10.1128/AAC.06003-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Doran JL, Pang Y, Mdluli KE, Moran AJ, Victor TC, Stokes RW, Mahenthiralingam E, Kreiswirth BN et al (1997) Mycobacterium tuberculosis efpA encodes an efflux protein of the QacA transporter family. Clin Diagn Lab Immunol 4:23–32

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ramón-García S, Martin C, Thompson CJ, Ainsa JA (2009) Role of the Mycobacterium tuberculosis P55 efflux pump in intrinsic drug resistance, oxidative stress responses, and growth. Antimicrob Agents Chemother 53:3675–3682. doi:10.1128/AAC.00550-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Siddiqi N, Das R, Pathak N, Banerjee S, Ahmed N, Katoch VM, Hasnain SE (2004) Mycobacterium tuberculosis isolate with a distinct genomic identity overexpresses a Tap-like efflux pump. Infection 32:109–111. doi:10.1007/s15010-004-3097-x

    Article  CAS  PubMed  Google Scholar 

  60. Ramón-García S, Ng C, Jensen PR, Dosanjh M, Burian J, Morris RP, Folcher M, Eltis LD et al (2013) WhiB7, an Fe-S-dependent transcription factor that activates species-specific repertoires of drug resistance determinants in actinobacteria. J Biol Chem 288:34514–34528. doi:10.1074/jbc.M113.516385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ramón-García S, Martin C, De Rossi E, Aínsa JA (2007) Contribution of the Rv2333c efflux pump (the Stp protein) from Mycobacterium tuberculosis to intrinsic antibiotic resistance in Mycobacterium bovis BCG. J Antimicrob Chemother 59:544–547. doi:10.1093/jac/dkl510

    Article  PubMed  CAS  Google Scholar 

  62. Gupta AK, Reddy VP, Lavania M, Chauhan DS, Venkatesan K, Sharma VD, Tyagi AK, Katoch VM (2010) jefA (Rv2459), a drug efflux gene in Mycobacterium tuberculosis confers resistance to isoniazid & ethambutol. Indian J Med Res 132:176–188

    CAS  PubMed  Google Scholar 

  63. Li W, Upadhyay A, Fontes FL, North EJ, Wang Y, Crans DC, Grzegorzewicz AE, Jones V et al (2014) Novel insights into the mechanism of inhibition of MmpL3, a target of multiple pharmacophores in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:6413–6423. doi:10.1128/AAC.03229-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. La Rosa V, Poce G, Canseco JO, Buroni S, Pasca MR, Biava M, Raju RM, Porretta GC et al (2012) MmpL3 is the cellular target of the antitubercular pyrrole derivative BM212. Antimicrob Agents Chemother 56:324–331. doi:10.1128/AAC.05270-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Tahlan K, Wilson R, Kastrinsky DB, Arora K, Nair V, Fischer E, Barnes SW, Walker JR et al (2012) SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob Agents Chemother 56:1797–1809. doi:10.1128/AAC.05708-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wells RM, Jones CM, Xi Z, Speer A, Danilchanka O, Doornbos KS, Sun P, Wu F et al (2013) Discovery of a siderophore export system essential for virulence of Mycobacterium tuberculosis. PLoS Pathog 9:e1003120. doi:10.1371/journal.ppat.1003120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. de Knegt GJ, Bruning O, ten Kate MT, de Jong M, van Belkum A, Endtz HP, Breit TM, Bakker-Woudenberg IA et al (2013) Rifampicin-induced transcriptome response in rifampicin-resistant Mycobacterium tuberculosis. Tuberculosis 93:96–101. doi:10.1016/j.tube.2012.10.013

    Article  PubMed  CAS  Google Scholar 

  68. Milano A, Pasca MR, Provvedi R, Lucarelli AP, Manina G, de Jesus Lopes Ribeiro AL, Manganelli R, Riccardi G (2009) Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5-MmpL5 efflux system. Tuberculosis 89:84–90. doi:10.1016/j.tube.2008.08.003

    Article  CAS  PubMed  Google Scholar 

  69. Hartkoorn RC, Uplekar S, Cole ST (2014) Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:2979–2981. doi:10.1128/AAC.00037-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Domenech P, Reed MB, Barry CE 3rd (2005) Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect Immun 73:3492–3501. doi:10.1128/IAI.73.6.3492-3501.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pasca MR, Guglierame P, De Rossi E, Zara F, Riccardi G (2005) mmpL7 gene of Mycobacterium tuberculosis is responsible for isoniazid efflux in Mycobacterium smegmatis. Antimicrob Agents Chemother 49:4775–4777. doi:10.1128/AAC.49.11.4775-4777.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Alland D, Kramnik I, Weisbrod TR, Otsubo L, Cerny R, Miller LP, Jacobs WR Jr, Bloom BR (1998) Identification of differentially expressed mRNA in prokaryotic organisms by customized amplification libraries (DECAL): the effect of isoniazid on gene expression in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 95:13227–13232. doi:10.1073/pnas.95.22.13227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Colangeli R, Helb D, Sridharan S, Sun J, Varma-Basil M, Hazbon MH, Harbacheuski R, Megjugorac NJ et al (2005) The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol. Mol Microbiol 55:1829–1840. doi:10.1111/j.1365-2958.2005.04510.x

    Article  CAS  PubMed  Google Scholar 

  74. Yan N (2013) Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci 38:151–159. doi:10.1016/j.tibs.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  75. Sander P, De Rossi E, Boddinghaus B, Cantoni R, Branzoni M, Bottger EC, Takiff H, Rodriquez R et al (2000) Contribution of the multidrug efflux pump LfrA to innate mycobacterial drug resistance. FEMS Microbiol Lett 193:19–23. doi:10.1111/j.1574-6968.2000.tb09396.x

    Article  CAS  PubMed  Google Scholar 

  76. Li X-Z, Zhang L, Nikaido H (2004) Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 48:2415–2423. doi:10.1128/AAC.48.7.2415-2423.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bianco MV, Blanco FC, Imperiale B, Forrellad MA, Rocha RV, Klepp LI, Cataldi AA, Morcillo N et al (2011) Role of P27-P55 operon from Mycobacterium tuberculosis in the resistance to toxic compounds. BMC Infect Dis 11:195. doi:10.1186/1471-2334-11-195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee RE, Hurdle JG, Liu J, Bruhn DF, Matt T, Scherman MS, Vaddady PK, Zheng Z et al (2014) Spectinamides: a new class of semisynthetic antituberculosis agents that overcome native drug efflux. Nat Med 20:152–158. doi:10.1038/nm.3458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Viveiros M, Pieroni M (2014) Spectinamides: a challenge, a proof, and a suggestion. Trends Microbiol 22:170–171. doi:10.1016/j.tim.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  80. Ramón-García S, Stewart GR, Hui ZK, Mohn WW, Thompson CJ (2015) The mycobacterial P55 efflux pump is required for optimal growth on cholesterol. Virulence 6:444–448. doi:10.1080/21505594.2015.1044195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci 27:587–593. doi:10.1016/j.tips.2006.09.001

    Article  CAS  PubMed  Google Scholar 

  82. Moriyama Y, Hiasa M, Matsumoto T, Omote H (2008) Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics. Xenobiotica 38:1107–1118. doi:10.1080/00498250701883753

    Article  CAS  PubMed  Google Scholar 

  83. Mishra MN, Daniels L (2013) Characterization of the MSMEG_2631 gene (mmp) encoding a multidrug and toxic compound extrusion (MATE) family protein in Mycobacterium smegmatis and exploration of its polyspecific nature using biolog phenotype microarray. J Bacteriol 195:1610–1621. doi:10.1128/JB.01724-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Paulsen IT, Nguyen L, Sliwinski MK, Rabus R, Saier MH Jr (2000) Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J Mol Biol 301:75–100. doi:10.1006/jmbi.2000.3961

    Article  CAS  PubMed  Google Scholar 

  85. Zgurskaya HI, Nikaido H (2000) Multidrug resistance mechanisms: drug efflux across two membranes. Mol Microbiol 37:219–225. doi:10.1046/j.1365-2958.2000.01926.x

    Article  CAS  PubMed  Google Scholar 

  86. Anes J, McCusker MP, Fanning S, Martins M (2015) The ins and outs of RND efflux pumps in Escherichia coli. Front Microbiol 6:587. doi:10.3389/fmicb.2015.00587

    Article  PubMed  PubMed Central  Google Scholar 

  87. Camacho LR, Constant P, Raynaud C, Laneelle MA, Triccas JA, Gicquel B, Daffe M, Guilhot C (2001) Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 276:19845–19854. doi:10.1074/jbc.M100662200

    Article  CAS  PubMed  Google Scholar 

  88. Bailo R, Bhatt A, Ainsa JA (2015) Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development. Biochem Pharmacol 96:159–167. doi:10.1016/j.bcp.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  89. Tekaia F, Gordon SV, Garnier T, Brosch R, Barrell BG, Cole ST (1999) Analysis of the proteome of Mycobacterium tuberculosis in silico. Tuber Lung Dis 79:329–342. doi:10.1054/tuld.1999.0220

    Article  CAS  PubMed  Google Scholar 

  90. Sandhu P, Akhter Y (2015) The internal gene duplication and interrupted coding sequences in the MmpL genes of Mycobacterium tuberculosis: towards understanding the multidrug transport in an evolutionary perspective. Int J Med Microbiol 305:413–423. doi:10.1016/j.ijmm.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  91. Cox JS, Chen B, McNeil M, Jacobs WR Jr (1999) Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402:79–83. doi:10.1038/47042

    Article  CAS  PubMed  Google Scholar 

  92. Andries K, Villellas C, Coeck N, Thys K, Gevers T, Vranckx L, Lounis N, de Jong BC et al (2014) Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One 9:e102135. doi:10.1371/journal.pone.0102135

    Google Scholar 

  93. Paulsen IT, Skurray RA, Tam R, Saier MH Jr, Turner RJ, Weiner JH, Goldberg EB, Grinius LL (1996) The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol Microbiol 19:1167–1175. doi:10.1111/j.1365-2958.1996.tb02462.x

    Article  CAS  PubMed  Google Scholar 

  94. Prevots DR, Adjemian J, Fernandez AG, Knowles MR, Olivier KN (2014) Environmental risks for nontuberculous mycobacteria. Individual exposures and climatic factors in the cystic fibrosis population. Ann Am Thorac Soc 11:1032–1038. doi:10.1513/AnnalsATS.201404-184OC

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cowman SM, Loebinger L (2015) Nontuberculous mycobacterial pulmonary disease. Clin Pulm Med 22:8–14. doi:10.1097/CPM.0000000000000079

    Article  Google Scholar 

  96. Nessar R, Cambau E, Reyrat JM, Murray A, Gicquel B (2012) Mycobacterium abscessus: a new antibiotic nightmare. J Antimicrob Chemother 67:810–818. doi:10.1093/jac/dkr578

    Article  CAS  PubMed  Google Scholar 

  97. Pawlik A, Garnier G, Orgeur M, Tong P, Lohan A, Le Chevalier F, Sapriel G, Roux AL et al (2013) Identification and characterization of the genetic changes responsible for the characteristic smooth-to-rough morphotype alterations of clinically persistent Mycobacterium abscessus. Mol Microbiol 90:612–629. doi:10.1111/mmi.12387

    Article  CAS  PubMed  Google Scholar 

  98. Sassi M, Drancourt M (2014) Genome analysis reveals three genomospecies in Mycobacterium abscessus. BMC Genomics 15:359. doi:10.1186/1471-2164-15-359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Esteban J, Martin-de-Hijas NZ, Ortiz A, Kinnari TJ, Bodas Sanchez A, Gadea I, Fernandez-Roblas R (2009) Detection of lfrA and tap efflux pump genes among clinical isolates of non-pigmented rapidly growing mycobacteria. Int J Antimicrob Agents 34:454–456. doi:10.1016/j.ijantimicag.2009.06.026

    Article  CAS  PubMed  Google Scholar 

  100. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544. doi:10.1038/31159

    Article  CAS  PubMed  Google Scholar 

  101. Lew JM, Kapopoulou A, Jones LM, Cole ST (2011) TubercuList – 10 years after. Tuberculosis 91:1–7. doi:10.1016/j.tube.2010.09.008

    Article  PubMed  Google Scholar 

  102. Lee JH, Ammerman NC, Nolan S, Geiman DE, Lun S, Guo H, Bishai WR (2012) Isoniazid resistance without a loss of fitness in Mycobacterium tuberculosis. Nat Commun 3:753. doi:10.1038/ncomms1724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Burian J, Yim G, Hsing M, Axerio-Cilies P, Cherkasov A, Spiegelman GB, Thompson CJ (2013) The mycobacterial antibiotic resistance determinant WhiB7 acts as a transcriptional activator by binding the primary sigma factor SigA (RpoV). Nucleic Acids Res 41:10062–10076. doi:10.1093/nar/gkt751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Burian J, Ramon-Garcia S, Howes CG, Thompson CJ (2012) WhiB7, a transcriptional activator that coordinates physiology with intrinsic drug resistance in Mycobacterium tuberculosis. Expert Rev Anti Infect Ther 10:1037–1047. doi:10.1586/eri.12.90

    Article  CAS  PubMed  Google Scholar 

  105. Morris RP, Nguyen L, Gatfield J, Visconti K, Nguyen K, Schnappinger D, Ehrt S, Liu Y et al (2005) Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 102:12200–12205. doi:10.1073/pnas.0505446102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Larsson C, Luna B, Ammerman NC, Maiga M, Agarwal N, Bishai WR (2012) Gene expression of Mycobacterium tuberculosis putative transcription factors whiB1-7 in redox environments. PLoS One 7:e37516. doi:10.1371/journal.pone.0037516

    Google Scholar 

  107. Reeves AZ, Campbell PJ, Sultana R, Malik S, Murray M, Plikaytis BB, Shinnick TM, Posey JE (2013) Aminoglycoside cross-resistance in Mycobacterium tuberculosis due to mutations in the 5′ untranslated region of whiB7. Antimicrob Agents Chemother 57:1857–1865. doi:10.1128/AAC.02191-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zaunbrecher MA, Sikes RD Jr, Metchock B, Shinnick TM, Posey JE (2009) Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 106:20004–20009. doi:10.1073/pnas.0907925106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Buriánková K, Doucet-Populaire F, Dorson O, Gondran A, Ghnassia JC, Weiser J, Pernodet JL (2004) Molecular basis of intrinsic macrolide resistance in the Mycobacterium tuberculosis complex. Antimicrob Agents Chemother 48:143–150. doi:10.1128/AAC.48.1.143-150.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Oldenburg M, Kruger A, Ferstl R, Kaufmann A, Nees G, Sigmund A, Bathke B, Lauterbach H et al (2012) TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 337:1111–1115. doi:10.1126/science.1220363

    Article  CAS  PubMed  Google Scholar 

  111. Ramón-García S, Mick V, Dainese E, Martin C, Thompson CJ, De Rossi E, Manganelli R, Aínsa JA (2012) Functional and genetic characterization of the Tap efflux pump in Mycobacterium bovis BCG. Antimicrob Agents Chemother 56:2074–2083. doi:10.1128/AAC.05946-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Adams KN, Szumowski JD, Ramakrishnan L (2014) Verapamil, and its metabolite norverapamil, inhibit macrophage-induced, bacterial efflux pump-mediated tolerance to multiple anti-tubercular drugs. J Infect Dis 210:456–466. doi:10.1093/infdis/jiu095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Buroni S, Manina G, Guglierame P, Pasca MR, Riccardi G, De Rossi E (2006) LfrR is a repressor that regulates expression of the efflux pump LfrA in Mycobacterium smegmatis. Antimicrob Agents Chemother 50:4044–4052. doi:10.1128/AAC.00656-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bellinzoni M, Buroni S, Schaeffer F, Riccardi G, De Rossi E, Alzari PM (2009) Structural plasticity and distinct drug-binding modes of LfrR, a mycobacterial efflux pump regulator. J Bacteriol 191:7531–7537. doi:10.1128/JB.00631-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Turapov O, Waddell SJ, Burke B, Glenn S, Sarybaeva AA, Tudo G, Labesse G, Young DI et al (2014) Antimicrobial treatment improves mycobacterial survival in nonpermissive growth conditions. Antimicrob Agents Chemother 58:2798–2806. doi:10.1128/AAC.02774-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Turapov O, Waddell SJ, Burke B, Glenn S, Sarybaeva AA, Tudo G, Labesse G, Young DI et al (2014) Oleoyl coenzyme A regulates interaction of transcriptional regulator RaaS (Rv1219c) with DNA in mycobacteria. J Biol Chem 289:25241–25249. doi:10.1074/jbc.M114.577338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kumar N, Radhakrishnan A, Wright CC, Chou TH, Lei HT, Bolla JR, Tringides ML, Rajashankar KR et al (2014) Crystal structure of the transcriptional regulator Rv1219c of Mycobacterium tuberculosis. Protein Sci 23:423–432. doi:10.1002/pro.2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hartog E, Menashe O, Kler E, Yaron S (2010) Salicylate reduces the antimicrobial activity of ciprofloxacin against extracellular Salmonella enterica serovar Typhimurium, but not against Salmonella in macrophages. J Antimicrob Chemother 65:888–896. doi:10.1093/jac/dkq077

    Article  CAS  PubMed  Google Scholar 

  119. Radhakrishnan A, Kumar N, Wright CC, Chou TH, Tringides ML, Bolla JR, Lei HT, Rajashankar KR et al (2014) Crystal structure of the transcriptional regulator Rv0678 of Mycobacterium tuberculosis. J Biol Chem 289:16526–16540. doi:10.1074/jbc.M113.538959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gao YR, Feng N, Chen T, de Li F, Bi LJ (2015) Structure of the MarR family protein Rv0880 from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Commun 71:741–745. doi:10.1107/S2053230X15007281

    Article  CAS  Google Scholar 

  121. Winglee K, Lun S, Pieroni M, Kozikowski A, Bishai W (2015) Mutation of Rv2887, a marR-like gene, confers Mycobacterium tuberculosis resistance to an imidazopyridine-based agent. Antimicrob Agents Chemother 59:6873–6881. doi:10.1128/AAC.01341-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cohen SP, Hachler H, Levy SB (1993) Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli. J Bacteriol 175:1484–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Vinué L, McMurry LM, Levy SB (2013) The 216-bp marB gene of the marRAB operon in Escherichia coli encodes a periplasmic protein which reduces the transcription rate of marA. FEMS Microbiol Lett 345:49–55. doi:10.1111/1574-6968.12182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Sala C, Haouz A, Saul FA, Miras I, Rosenkrands I, Alzari PM, Cole ST (2009) Genome-wide regulon and crystal structure of BlaI (Rv1846c) from Mycobacterium tuberculosis. Mol Microbiol 71:1102–1116. doi:10.1111/j.1365-2958.2008.06583.x

    Article  CAS  PubMed  Google Scholar 

  125. Huffman JL, Brennan RG (2002) Prokaryotic transcription regulators: more than just the helix-turn-helix motif. Curr Opin Struct Biol 12:98–106. doi:10.1016/S0959-440X(02)00295-6

    Article  CAS  PubMed  Google Scholar 

  126. Bolla JR, Do SV, Long F, Dai L, Su CC, Lei HT, Chen X, Gerkey JE et al (2012) Structural and functional analysis of the transcriptional regulator Rv3066 of Mycobacterium tuberculosis. Nucleic Acids Res 40:9340–9355. doi:10.1093/nar/gks677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bowman J, Ghosh P (2014) A complex regulatory network controlling intrinsic multidrug resistance in Mycobacterium smegmatis. Mol Microbiol 91:121–134. doi:10.1111/mmi.12448

    Article  CAS  PubMed  Google Scholar 

  128. Choudhuri BS, Sen S, Chakrabarti P (1999) Isoniazid accumulation in Mycobacterium smegmatis is modulated by proton motive force-driven and ATP-dependent extrusion systems. Biochem Biophys Res Commun 256:682–684. doi:10.1006/bbrc.1999.0357

    Article  CAS  PubMed  Google Scholar 

  129. Sazanov LA (2015) A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Biol 16:375–388. doi:10.1038/nrm3997

    Article  CAS  PubMed  Google Scholar 

  130. Van Bambeke F, Pagès JM, Lee VJ (2006) Inhibitors of bacterial efflux pumps as adjuvants in antibiotic treatments and diagnostic tools for detection of resistance by efflux. Recent Pat Antiinfect Drug Discov 1:157–175. doi:10.2174/157489106777452692

    Google Scholar 

  131. Rodrigues L, Ainsa JA, Amaral L, Viveiros M (2011) Inhibition of drug efflux in mycobacteria with phenothiazines and other putative efflux inhibitors. Recent Pat Antiinfect Drug Discov 6:118–127. doi:10.2174/157489111796064579

    Article  CAS  PubMed  Google Scholar 

  132. Lewis K, Naroditskaya V, Ferrante A, Fokina I (1994) Bacterial resistance to uncouplers. J Bioenerg Biomembr 26:639–646

    Article  CAS  PubMed  Google Scholar 

  133. Kristiansen JE, Thomsen VF, Martins A, Viveiros M, Amaral L (2010) Non-antibiotics reverse resistance of bacteria to antibiotics. In Vivo 24:751–754

    CAS  PubMed  Google Scholar 

  134. Salih FA, Kaushik NK, Sharma P, Choudary GV, Murthy PS, Venkitasubramanian TA (1991) Calmodulin-like activity in mycobacteria. Indian J Biochem Biophys 28:491–495

    CAS  PubMed  Google Scholar 

  135. Amaral L, Viveiros M, Molnar J (2004) Antimicrobial activity of phenothiazines. In Vivo 18:725–731

    CAS  PubMed  Google Scholar 

  136. van Soolingen D, Hernandez-Pando R, Orozco H, Aguilar D, Magis-Escurra C, Amaral L, van Ingen J, Boeree MJ (2010) The antipsychotic thioridazine shows promising therapeutic activity in a mouse model of multidrug-resistant tuberculosis. PLoS One 5:e12640. doi:10.1371/journal.pone.0012640

    Google Scholar 

  137. Abbate E, Vescovo M, Natiello M, Cufre M, Garcia A, Gonzalez Montaner P, Ambroggi M, Ritacco V et al (2012) Successful alternative treatment of extensively drug-resistant tuberculosis in Argentina with a combination of linezolid, moxifloxacin and thioridazine. J Antimicrob Chemother 67:473–477. doi:10.1093/jac/dkr500

    Article  CAS  PubMed  Google Scholar 

  138. Wetzel H, Grunder G, Hillert A, Philipp M, Gattaz WF, Sauer H, Adler G, Schroder J et al (1998) Amisulpride versus flupentixol in schizophrenia with predominantly positive symptomatology – a double-blind controlled study comparing a selective D2-like antagonist to a mixed D1-/D2-like antagonist. Psychopharmacology 137:223–232. doi:10.1007/s002130050614

    Article  CAS  PubMed  Google Scholar 

  139. Davies MK, Hollman A (2002) The opium poppy, morphine, and verapamil. Heart 88:3. doi:10.1136/heart.88.1.3-a

    Article  PubMed Central  Google Scholar 

  140. Andersen CL, Holland IB, Jacq A (2006) Verapamil, a Ca2+ channel inhibitor acts as a local anesthetic and induces the sigma E dependent extra-cytoplasmic stress response in E. coli. Biochim Biophys Acta 1758:1587–1595. doi:10.1016/j.bbamem.2006.05.022

    Article  CAS  PubMed  Google Scholar 

  141. Endicott JA, Ling V (1989) The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem 58:137–171. doi:10.1146/annurev.bi.58.070189.001033

    Article  CAS  PubMed  Google Scholar 

  142. Gupta AK, Chauhan DS, Srivastava K, Das R, Batra S, Mittal M, Goswami P, Singhal N et al (2006) Estimation of efflux mediated multi-drug resistance and its correlation with expression levels of two major efflux pumps in mycobacteria. J Commun Dis 38:246–254

    PubMed  Google Scholar 

  143. Rodrigues L, Machado D, Couto I, Amaral L, Viveiros M (2012) Contribution of efflux activity to isoniazid resistance in the Mycobacterium tuberculosis complex. Infect Genet Evol 12:695–700. doi:10.1016/j.meegid.2011.08.009

    Article  CAS  PubMed  Google Scholar 

  144. Gupta S, Cohen KA, Winglee K, Maiga M, Diarra B, Bishai WR (2014) Efflux inhibition with verapamil potentiates bedaquiline in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:574–576. doi:10.1128/AAC.01462-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Singh K, Kumar M, Pavadai E, Naran K, Warner DF, Ruminski PG, Chibale K (2014) Synthesis of new verapamil analogues and their evaluation in combination with rifampicin against Mycobacterium tuberculosis and molecular docking studies in the binding site of efflux protein Rv1258c. Bioorg Med Chem Lett 24:2985–2990. doi:10.1016/j.bmcl.2014.05.022

    Article  CAS  PubMed  Google Scholar 

  146. Louw GE, Warren RM, Gey van Pittius NC, Leon R, Jimenez A, Hernandez-Pando R, McEvoy CR, Grobbelaar M et al (2011) Rifampicin reduces susceptibility to ofloxacin in rifampicin-resistant Mycobacterium tuberculosis through efflux. Am J Respir Crit Care Med 184:269–276. doi:10.1164/rccm.201011-1924OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gupta S, Tyagi S, Almeida DV, Maiga MC, Ammerman NC, Bishai WR (2013) Acceleration of tuberculosis treatment by adjunctive therapy with verapamil as an efflux inhibitor. Am J Respir Crit Care Med 188:600–607. doi:10.1164/rccm.201304-0650OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Balijepalli S, Boyd MR, Ravindranath V (1999) Inhibition of mitochondrial complex I by haloperidol: the role of thiol oxidation. Neuropharmacology 38:567–577

    Article  CAS  PubMed  Google Scholar 

  149. Weinstein EA, Yano T, Li LS, Avarbock D, Avarbock A, Helm D, McColm AA, Duncan K et al (2005) Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs. Proc Natl Acad Sci U S A 102:4548–4553. doi:10.1073/pnas.0500469102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Warman AJ, Rito TS, Fisher NE, Moss DM, Berry NG, O’Neill PM, Ward SA, Biagini GA (2013) Antitubercular pharmacodynamics of phenothiazines. J Antimicrob Chemother 68:869–880. doi:10.1093/jac/dks483

    Article  CAS  PubMed  Google Scholar 

  151. Rao SP, Alonso S, Rand L, Dick T, Pethe K (2008) The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 105:11945–11950. doi:10.1073/pnas.0711697105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Miesel L, Weisbrod TR, Marcinkeviciene JA, Bittman R, Jacobs WR Jr (1998) NADH dehydrogenase defects confer isoniazid resistance and conditional lethality in Mycobacterium smegmatis. J Bacteriol 180:2459–2467

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Yano T, Li LS, Weinstein E, Teh JS, Rubin H (2006) Steady-state kinetics and inhibitory action of antitubercular phenothiazines on Mycobacterium tuberculosis type-II NADH-menaquinone oxidoreductase (NDH-2). J Biol Chem 281:11456–11463. doi:10.1074/jbc.M508844200

    Article  CAS  PubMed  Google Scholar 

  154. Modica-Napolitano JS, Lagace CJ, Brennan WA, Aprille JR (2003) Differential effects of typical and atypical neuroleptics on mitochondrial function in vitro. Arch Pharm Res 26:951–959. doi:10.1007/BF02980205

    Google Scholar 

  155. Schurig-Briccio LA, Yano T, Rubin H, Gennis RB (2014) Characterization of the type 2 NADH:menaquinone oxidoreductases from Staphylococcus aureus and the bactericidal action of phenothiazines. Biochim Biophys Acta 1837:954–963. doi:10.1016/j.bbabio.2014.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Stavri M, Piddock LJV, Gibbons S (2007) Bacterial efflux pump inhibitors from natural sources. J Antimicrob Chemother 59:1247–1260. doi:10.1093/jac/dkl460

    Article  CAS  PubMed  Google Scholar 

  157. Guzman JD, Gupta A, Bucar F, Gibbons S, Bhakta S (2012) Antimycobacterials from natural sources: ancient times, antibiotic era and novel scaffolds. Front Biosci 17:1861–1881. doi:10.2741/4024

    Article  CAS  Google Scholar 

  158. Gumbo T, Louie A, Liu W, Ambrose PG, Bhavnani SM, Brown D, Drusano GL (2007) Isoniazid’s bactericidal activity ceases because of the emergence of resistance, not depletion of Mycobacterium tuberculosis in the log phase of growth. J Infect Dis 195:194–201. doi:10.1086/510247

    Article  CAS  PubMed  Google Scholar 

  159. Zhou S, Lim LY, Chowbay B (2004) Herbal modulation of P-glycoprotein. Drug Metab Rev 36:57–104. doi:10.1081/DMR-120028427

    Article  CAS  PubMed  Google Scholar 

  160. Sharma S, Kumar M, Sharma S, Nargotra A, Koul S, Khan IA (2010) Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis. J Antimicrob Chemother 65:1694–1701. doi:10.1093/jac/dkq186

    Article  CAS  PubMed  Google Scholar 

  161. Ordway D, Viveiros M, Leandro C, Bettencourt R, Almeida J, Martins M, Kristiansen JE, Molnar J et al (2003) Clinical concentrations of thioridazine kill intracellular multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 47:917–922. doi:10.1128/AAC.47.3.917-922.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rayasam GV, Balganesh TS (2015) Exploring the potential of adjunct therapy in tuberculosis. Trends Pharmacol Sci 36:506–513. doi:10.1016/j.tips.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  163. Szumowski JD, Adams KN, Edelstein PH, Ramakrishnan L (2013) Antimicrobial efflux pumps and Mycobacterium tuberculosis drug tolerance: evolutionary considerations. Curr Top Microbiol Immunol 374:81–108. doi:10.1007/82_2012_300

    CAS  PubMed  Google Scholar 

  164. Martins M, Viveiros M, Amaral L (2008) The TB laboratory of the future: macrophage-based selection of XDR-TB therapeutics. Future Microbiol 3:135–144. doi:10.2217/17460913.3.2.135

    Article  CAS  PubMed  Google Scholar 

  165. Srikrishna G, Gupta S, Dooley KE, Bishai WR (2015) Can the addition of verapamil to bedaquiline-containing regimens improve tuberculosis treatment outcomes? A novel approach to optimizing TB treatment. Future Microbiol 10:1257–1260. doi:10.2217/FMB.15.56

    Article  CAS  PubMed  Google Scholar 

  166. Amaral L, Kristiansen JE, Viveiros M, Atouguia J (2001) Activity of phenothiazines against antibiotic-resistant Mycobacterium tuberculosis: a review supporting further studies that may elucidate the potential use of thioridazine as anti-tuberculosis therapy. J Antimicrob Chemother 47:505–511. doi:10.1093/jac/47.5.505

    Article  CAS  PubMed  Google Scholar 

  167. Gupta S, Tyagi S, Bishai WR (2015) Verapamil increases the bactericidal activity of bedaquiline against Mycobacterium tuberculosis in a mouse model. Antimicrob Agents Chemother 59:673–676. doi:10.1128/AAC.04019-14

    Article  PubMed  CAS  Google Scholar 

  168. Grossman TH, Shoen CM, Jones SM, Jones PL, Cynamon MH, Locher CP (2015) The efflux pump inhibitor timcodar improves the potency of antimycobacterial agents. Antimicrob Agents Chemother 59:1534–1541. doi:10.1128/AAC.04271-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. de Knegt GJ, Bakker-Woudenberg IA, van Soolingen D, Aarnoutse R, Boeree MJ, de Steenwinkel JE (2015) SILA-421 activity in vitro against rifampicin-susceptible and rifampicin-resistant Mycobacterium tuberculosis, and in vivo in a murine tuberculosis model. Int J Antimicrob Agents 46:66–72. doi:10.1016/j.ijantimicag.2015.02.025

    Google Scholar 

  170. Pieroni M, Machado D, Azzali E, Santos Costa S, Couto I, Costantino G, Viveiros M (2015) Rational design and synthesis of thioridazine analogues as enhancers of the antituberculosis therapy. J Med Chem 58:5842–5853. doi:10.1021/acs.jmedchem.5b00428

    Article  CAS  PubMed  Google Scholar 

  171. Peirs P, Lefevre P, Boarbi S, Wang XM, Denis O, Braibant M, Pethe K, Locht C et al (2005) Mycobacterium tuberculosis with disruption in genes encoding the phosphate binding proteins PstS1 and PstS2 is deficient in phosphate uptake and demonstrates reduced in vivo virulence. Infect Immun 73:1898–1902. doi:10.1128/IAI.73.3.1898-1902.2005

    Google Scholar 

  172. Astarie-Dequeker C, Le Guyader L, Malaga W, Seaphanh FK, Chalut C, Lopez A, Guilhot C (2009) Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathog 5:e1000289. doi:10.1371/journal.ppat.1000289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Camacho LR, Ensergueix D, Perez E, Gicquel B, Guilhot C (1999) Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34:257–267. doi:10.1046/j.1365-2958.1999.01593.x

    Article  CAS  PubMed  Google Scholar 

  174. Fernandez-Moreno MA, Martinez E, Boto L, Hopwood DA, Malpartida F (1992) Nucleotide sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin. J Biol Chem 267:19278–19290

    CAS  PubMed  Google Scholar 

  175. Domenech P, Reed MB (2009) Rapid and spontaneous loss of phthiocerol dimycocerosate (PDIM) from Mycobacterium tuberculosis grown in vitro: implications for virulence studies. Microbiology 155:3532–3543. doi:10.1099/mic.0.029199-0

    Google Scholar 

  176. Andersen AB, Ljungqvist L, Olsen M (1990) Evidence that protein antigen b of Mycobacterium tuberculosis is involved in phosphate metabolism. J Gen Microbiol 136:477–480. doi:10.1099/00221287-136-3-477

    Article  CAS  PubMed  Google Scholar 

  177. Linton KJ, Higgins CF (1998) The Escherichia coli ATP-binding cassette (ABC) proteins. Mol Microbiol 28:5–13. doi:10.1046/j.1365-2958.1998.00764.x

    Article  CAS  PubMed  Google Scholar 

  178. Sarin J, Aggarwal S, Chaba R, Varshney GC, Chakraborti PK (2001) B-subunit of phosphate-specific transporter from Mycobacterium tuberculosis is a thermostable ATPase. J Biol Chem 276:44590–44597. doi:10.1074/jbc.M105401200

    Article  CAS  PubMed  Google Scholar 

  179. Chakraborti PK, Bhatt K, Banerjee SK, Misra P (1999) Role of an ABC importer in mycobacterial drug resistance. Biosci Rep 19:293–300. doi:10.1023/A:1020598324663

    Article  CAS  PubMed  Google Scholar 

  180. Collins DM, Kawakami RP, Buddle BM, Wards BJ, de Lisle GW (2003) Different susceptibility of two animal species infected with isogenic mutants of Mycobacterium bovis identifies phoT as having roles in tuberculosis virulence and phosphate transport. Microbiology 149:3203–3212. doi:10.1099/mic.0.26469-0

    Article  CAS  PubMed  Google Scholar 

  181. Bigi F, Alito A, Romano MI, Zumarraga M, Caimi K, Cataldi A (2000) The gene encoding P27 lipoprotein and a putative antibiotic-resistance gene form an operon in Mycobacterium tuberculosis and Mycobacterium bovis. Microbiology 146(Pt 4):1011–1018. doi:10.1099/00221287-146-4-1011

    Article  CAS  PubMed  Google Scholar 

  182. Bigi F, Gioffre A, Klepp L, Santangelo MP, Alito A, Caimi K, Meikle V, Zumarraga M et al (2004) The knockout of the lprG-Rv1410 operon produces strong attenuation of Mycobacterium tuberculosis. Microbes Infect 6:182–187. doi:10.1016/j.micinf.2003.10.010

    Article  CAS  PubMed  Google Scholar 

  183. Farrow MF, Rubin EJ (2008) Function of a mycobacterial major facilitator superfamily pump requires a membrane-associated lipoprotein. J Bacteriol 190:1783–1791. doi:10.1128/JB.01046-07

    Article  CAS  PubMed  Google Scholar 

  184. Viale MN, Park KT, Imperiale B, Gioffre AK, Colombatti Olivieri MA, Moyano RD, Morcillo N, Santangelo Mde L et al (2014) Characterization of a Mycobacterium avium subsp. avium operon associated with virulence and drug detoxification. BioMed Res Int 2014:809585. doi:10.1155/2014/809585

    Google Scholar 

  185. Rengarajan J, Bloom BR, Rubin EJ (2005) Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A 102:8327–8332. doi:10.1073/pnas.0503272102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ramón-García S, Ng C, Anderson H, Chao JD, Zheng X, Pfeifer T, Av-Gay Y, Roberge M et al (2011) Synergistic drug combinations for tuberculosis therapy identified by a novel high-throughput screen. Antimicrob Agents Chemother 55:3861–3869. doi:10.1128/AAC.00474-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Cohen T, Murray M (2004) Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness. Nat Med 10:1117–1121. doi:10.1038/nm1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Von Groll A, Martin A, Felix C, Prata PF, Honscha G, Portaels F, Vandame P, da Silva PE et al (2010) Fitness study of the RDRio lineage and Latin American-Mediterranean family of Mycobacterium tuberculosis in the city of Rio Grande, Brazil. FEMS Immunol Med Microbiol 58:119–127. doi:10.1111/j.1574-695X.2009.00611.x

    Article  CAS  Google Scholar 

  189. von Groll A, Martin A, Stehr M, Singh M, Portaels F, da Silva PE, Palomino JC (2010) Fitness of Mycobacterium tuberculosis strains of the W-Beijing and Non-W-Beijing genotype. PLoS One 5:e10191. doi:10.1371/journal.pone.0010191

    Google Scholar 

  190. Almeida Da Silva PE, Palomino JC (2011) Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother 66:1417–1430. doi:10.1093/jac/dkr173

    Article  CAS  PubMed  Google Scholar 

  191. Chatterjee A, Saranath D, Bhatter P, Mistry N (2013) Global transcriptional profiling of longitudinal clinical isolates of Mycobacterium tuberculosis exhibiting rapid accumulation of drug resistance. PLoS One 8:e54717. doi:10.1371/journal.pone.0054717

    Google Scholar 

  192. Eldholm V, Norheim G, von der Lippe B, Kinander W, Dahle UR, Caugant DA, Mannsaker T, Mengshoel AT et al (2014) Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol 15:490. doi:10.1186/s13059-014-0490-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Jeeves RE, Marriott AA, Pullan ST, Hatch KA, Allnutt JC, Freire-Martin I, Hendon-Dunn CL, Watson R et al (2015) Mycobacterium tuberculosis is resistant to isoniazid at a slow growth rate by single nucleotide polymorphisms in katG codon Ser315. PLoS One 10:e0138253. doi:10.1371/journal.pone.0138253

    Google Scholar 

  194. Mitchison DA (1998) How drug resistance emerges as a result of poor compliance during short course chemotherapy for tuberculosis. Int J Tuberc Lung Dis 2:10–15

    CAS  PubMed  Google Scholar 

  195. Gumbo T (2013) Biological variability and the emergence of multidrug-resistant tuberculosis. Nat Genet 45:720–721. doi:10.1038/ng.2675

    Article  CAS  PubMed  Google Scholar 

  196. Zumla A, Chakaya J, Centis R, D’Ambrosio L, Mwaba P, Bates M, Kapata N, Nyirenda T et al (2015) Tuberculosis treatment and management – an update on treatment regimens, trials, new drugs, and adjunct therapies. Lancet Respir Med 3:220–234. doi:10.1016/S2213-2600(15)00063-6

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by project PTDC/BIA-MIC/121859/2010 from Fundação para a Ciência e a Tecnologia (FCT, Portugal) and “Ciência sem Fronteiras/Professor Visitante Especial” (Proc.n° 88881.064961/2014-01) (Miguel Viveiros/IHMT/UNL recipient; Jose R. Lapa e Silva/UFRJ coordinator) by CAPES/MEC/Brazil. Diana Machado was supported by contract SFRH/BPD/100688/2014 from FCT, Portugal. Diana Machado, Isabel Couto and Miguel Viveiros thank the support to the Global Health and Tropical Medicine (GHTM) R & D Center through grant UID/Multi/04413/2013 from FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Viveiros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

da Silva, P.E.A., Machado, D., Ramos, D., Couto, I., Von Groll, A., Viveiros, M. (2016). Efflux Pumps in Mycobacteria: Antimicrobial Resistance, Physiological Functions, and Role in Pathogenicity. In: Li, XZ., Elkins, C., Zgurskaya, H. (eds) Efflux-Mediated Antimicrobial Resistance in Bacteria. Adis, Cham. https://doi.org/10.1007/978-3-319-39658-3_21

Download citation

Publish with us

Policies and ethics