Skip to main content

Efflux Pumps in Neisseria gonorrhoeae: Contributions to Antimicrobial Resistance and Virulence

  • Chapter
  • First Online:

Abstract

This chapter deals with the structure-function relationships, genetics, gene regulation systems, and clinical/biologic significance of efflux pumps expressed by the sexually transmitted human pathogen Neisseria gonorrhoeae. The overarching theme emphasized herein is that bacterial efflux pumps contribute not only to the ability of N. gonorrhoeae to evade many antibiotics in current or past treatment regimens for gonorrhea but they also help this pathogen to evade antimicrobials that contribute to innate host defense during infection. Accordingly, gonococcal drug efflux pumps should be viewed not only in the context of their capacity to negatively impact antimicrobial therapies but in the larger picture as virulence factors that promote survival of N. gonorrhoeae during infection. Based on this hypothesis, we posit that strategies that cripple gonococcal efflux pump activities may prove useful in the design of new therapies, which is of special importance in this era when antibiotic-based treatment options for gonorrhea are dwindling due to mechanisms of bacterial resistance that include the action of drug efflux pumps.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   278.52
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Unemo M, Shafer WM (2014) Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev 27:587–613. doi:10.1128/CMR.00010-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Newman LM, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, Stevens G, Gottlieb S et al (2015) Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One 10:e0143304. doi:10.1371/journal.pone.0143304

    Google Scholar 

  3. Bolan GA, Sparling PF, Wasserheit JN (2012) The emerging threat of untreatable gonococcal infection. N Engl J Med 366:485–487. doi:10.1056/NEJMp1112456

    Article  PubMed  Google Scholar 

  4. Bauer ME, Shafer WM (2015) On the in vivo significance of bacterial resistance to antimicrobial peptides. Biochim Biophys Acta 1848:3101–3111. doi:10.1016/j.bbamem.2015.02.012

    Google Scholar 

  5. Golparian D, Shafer WM, Ohnishi M, Unemo M (2014) Importance of multidrug efflux pumps in the antimicrobial resistance property of clinical multidrug-resistant isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother 58:3556–3559. doi:10.1128/AAC.00038-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Unemo M, Nicholas RA, Jerse AE, Davies C, Shafer WM (2014) Molecular mechanisms of antibiotic resistance expressed by the pathogenic Neisseria. In: Davies JK, Kahler CM (eds) Pathogenic Neisseria: genomics, molecular biology and disease intervention. Caister Academic Press, Norfolk, UK. pp 161–192

    Google Scholar 

  7. Veal WL, Shafer WM (2003) Identification of a cell envelope protein (MtrF) involved in hydrophobic antimicrobial resistance in Neisseria gonorrhoeae. J Antimicrob Chemother 51:27–37. doi:10.1093/jac/dkg031

    Article  CAS  PubMed  Google Scholar 

  8. Su CC, Bolla JR, Kumar N, Radhakrishnan A, Long F, Delmar JA, Chou TH, Rajashankar KR et al (2015) Structure and function of Neisseria gonorrhoeae MtrF illuminates a class of antimetabolite efflux pumps. Cell Rep 11:61–70. doi:10.1016/j.celrep.2015.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Luna VA, Cousin S Jr, Whittington WL, Roberts MC (2000) Identification of the conjugative mef gene in clinical Acinetobacter junii and Neisseria gonorrhoeae isolates. Antimicrob Agents Chemother 44:2503–2506. doi:10.1128/AAC.44.9.2503-2506.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hagman KE, Pan W, Spratt BG, Balthazar JT, Judd RC, Shafer WM (1995) Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology 141:611–622. doi:10.1099/13500872-141-3-611

    Article  CAS  PubMed  Google Scholar 

  11. Veal WL, Nicholas RA, Shafer WM (2002) Overexpression of the MtrC-MtrD-MtrE efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. J Bacteriol 184:5619–5624. doi:10.1128/JB.184.20.5619-5624.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shafer WM, Folster JP, Nicholas RA (2010) Molecular mechanisms of antibiotic resistance expressed by the pathogenic Neisseria. In: Genco CA, Wetzler L (eds) Neisseria: molecular mechanisms of pathogenesis. Caister Academic Press, Norfolk, pp 245–268

    Google Scholar 

  13. Rouquette-Loughlin C, Dunham SA, Kuhn M, Balthazar JT, Shafer WM (2003) The NorM efflux pump of Neisseria gonorrhoeae and Neisseria meningitidis recognizes antimicrobial cationic compounds. J Bacteriol 185:1101–1106. doi:10.1128/JB.185.3.1101-1106.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rouquette-Loughlin CE, Balthazar JT, Shafer WM (2005) Characterization of the MacA-MacB efflux system in Neisseria gonorrhoeae. J Antimicrob Chemother 56:856–860. doi:10.1093/jac/dki333

    Article  CAS  PubMed  Google Scholar 

  15. Shafer WM, Qu X, Waring AJ, Lehrer RI (1998) Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci U S A 95:1829–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Warner DM, Folster JP, Shafer WM, Jerse AE (2007) Regulation of the MtrC-MtrD-MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae. J Infect Dis 196:1804–1812. doi:10.1086/522964

    Article  CAS  PubMed  Google Scholar 

  17. Lee EH, Shafer WM (1999) The farAB-encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Mol Microbiol 33:839–845. doi:10.1046/j.1365-2958.1999.01530.x

    Article  CAS  PubMed  Google Scholar 

  18. Jerse AE, Sharma ND, Simms AN, Crow ET, Snyder LA, Shafer WM (2003) A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect Immun 71:5576–5582. doi:10.1128/IAI.71.10.5576-5582.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Warner DM, Shafer WM, Jerse AE (2008) Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE Efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol Microbiol 70:462–478. doi:10.1111/j.1365-2958.2008.06424.x

    Google Scholar 

  20. Rouquette C, Harmon JB, Shafer WM (1999) Induction of the mtrCDE-encoded efflux pump system of Neisseria gonorrhoeae requires MtrA, an AraC-like protein. Mol Microbiol 33:651–658. doi:10.1046/j.1365-2958.1999.01517.x

    Article  CAS  PubMed  Google Scholar 

  21. Long F, Rouquette-Loughlin C, Shafer WM, Yu EW (2008) Functional cloning and characterization of the multidrug efflux pumps NorM from Neisseria gonorrhoeae and YdhE from Escherichia coli. Antimicrob Agents Chemother 52:3052–3060. doi:10.1128/AAC.00475-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bolla JR, Su CC, Do SV, Radhakrishnan A, Kumar N, Long F, Chou TH, Delmar JA et al (2014) Crystal structure of the Neisseria gonorrhoeae MtrD inner membrane multidrug efflux pump. PLoS One 9:e97903. doi:10.1371/journal.pone.0097903

    Google Scholar 

  23. Lei HT, Chou TH, Su CC, Bolla JR, Kumar N, Radhakrishnan A, Long F, Delmar JA et al (2014) Crystal structure of the open state of the Neisseria gonorrhoeae MtrE outer membrane channel. PLoS One 9:e97475. doi:10.1371/journal.pone.0097475

    Google Scholar 

  24. Hagman KE, Lucas CE, Balthazar JT, Snyder L, Nilles M, Judd RC, Shafer WM (1997) The MtrD protein of Neisseria gonorrhoeae is a member of the resistance/nodulation/division protein family constituting part of an efflux system. Microbiology 143:2117–2125. doi:10.1099/00221287-143-7-2117

    Article  CAS  PubMed  Google Scholar 

  25. Janganan TK, Zhang L, Bavro VN, Matak-Vinkovic D, Barrera NP, Burton MF, Steel PG, Robinson CV et al (2011) Opening of the outer membrane protein channel in tripartite efflux pumps is induced by interaction with the membrane fusion partner. J Biol Chem 286:5484–5493. doi:10.1074/jbc.M110.187658

    Article  CAS  PubMed  Google Scholar 

  26. Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443:173–179. doi:10.1038/nature05076

    Article  CAS  PubMed  Google Scholar 

  27. Murakami S, Nakashima R, Yamashita E, Yamaguchi A (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419:587–593. doi:10.1038/nature01050

    Article  CAS  PubMed  Google Scholar 

  28. Seeger MA, Schiefner A, Eicher T, Verrey F, Diederichs K, Pos KM (2006) Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313:1295–1298. doi:10.1126/science.1131542

    Article  CAS  PubMed  Google Scholar 

  29. Nakashima R, Sakurai K, Yamasaki S, Nishino K, Yamaguchi A (2011) Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature 480:565–569. doi:10.1038/nature10641

    CAS  PubMed  Google Scholar 

  30. Nakashima R, Sakurai K, Yamasaki S, Hayashi K, Nagata C, Hoshino K, Onodera Y, Nishino K et al (2013) Structural basis for the inhibition of bacterial multidrug exporters. Nature 500:102–106. doi:10.1038/nature12300

    Article  CAS  PubMed  Google Scholar 

  31. Sennhauser G, Bukowska MA, Briand C, Grutter MG (2009) Crystal structure of the multidrug exporter MexB from Pseudomonas aeruginosa. J Mol Biol 389:134–145. doi:10.1016/j.jmb.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  32. Su CC, Long F, Zimmermann MT, Rajashankar KR, Jernigan RL, Yu EW (2011) Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli. Nature 470:558–562. doi:10.1038/nature09743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Su CC, Long F, Lei HT, Bolla JR, Do SV, Rajashankar KR, Yu EW (2012) Charged amino acids (R83, E567, D617, E625, R669, and K678) of CusA are required for metal ion transport in the Cus efflux system. J Mol Biol 422:429–441. doi:10.1016/j.jmb.2012.05.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Franke S, Grass G, Nies DH (2001) The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiology 147:965–972. doi:10.1099/00221287-147-4-965

    Article  CAS  PubMed  Google Scholar 

  35. Franke S, Grass G, Rensing C, Nies DH (2003) Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 185:3804–3812. doi:10.1128/JB.185.13.3804-3812.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kulathila R, Kulathila R, Indic M, van den Berg B (2011) Crystal structure of Escherichia coli CusC, the outer membrane component of a heavy metal efflux pump. PLoS One 6:e15610. doi:10.1371/journal.pone.0015610

    Google Scholar 

  37. Lei HT, Bolla JR, Bishop NR, Su CC, Yu EW (2014) Crystal structures of CusC review conformational changes accompanying folding and transmembrane channel formation. J Mol Biol 426:403–411. doi:10.1016/j.jmb.2013.09.042

    Article  CAS  PubMed  Google Scholar 

  38. Long F, Su CC, Zimmermann MT, Boyken SE, Rajashankar KR, Jernigan RL, Yu EW (2010) Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport. Nature 467:484–488. doi:10.1038/nature09395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Su CC, Yang F, Long F, Reyon D, Routh MD, Kuo DW, Mokhtari AK, Van Ornam JD et al (2009) Crystal structure of the membrane fusion protein CusB from Escherichia coli. J Mol Biol 393:342–355. doi:10.1016/j.jmb.2009.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A, Saier MH Jr (1999) The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1:107–125. doi:10.1007/s13205-013-0155-z

    CAS  PubMed  Google Scholar 

  41. Janganan TK, Bavro VN, Zhang L, Borges-Walmsley MI, Walmsley AR (2013) Tripartite efflux pumps: energy is required for dissociation, but not assembly or opening of the outer membrane channel of the pump. Mol Microbiol 88:590–602. doi:10.1111/mmi.12211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Delahay RM, Robertson BD, Balthazar JT, Shafer WM, Ison CA (1997) Involvement of the gonococcal MtrE protein in the resistance of Neisseria gonorrhoeae to toxic hydrophobic agents. Microbiology 143:2127–2133. doi:10.1099/00221287-143-7-2127

    Article  CAS  PubMed  Google Scholar 

  43. Akama H, Kanemaki M, Yoshimura M, Tsukihara T, Kashiwagi T, Yoneyama H, Narita S-i, Nakagawa A et al (2004) Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa: dual modes of membrane anchoring and occluded cavity end. J Biol Chem 279:52816–52819. doi:10.1074/jbc.C400445200

    Article  CAS  PubMed  Google Scholar 

  44. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919. doi:10.1038/35016007

    Article  CAS  PubMed  Google Scholar 

  45. Su CC, Radhakrishnan A, Kumar N, Long F, Bolla JR, Lei HT, Delmar JA, Do SV et al (2014) Crystal structure of the Campylobacter jejuni CmeC outer membrane channel. Protein Sci 23:954–961. doi:10.1002/pro.2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Andersen C, Koronakis E, Hughes C, Koronakis V (2002) An aspartate ring at the TolC tunnel entrance determines ion selectivity and presents a target for blocking by large cations. Mol Microbiol 44:1131–1139. doi:10.1046/j.1365-2958.2002.02898.x

    Article  CAS  PubMed  Google Scholar 

  47. Bolla JR, Su CC, Delmar JA, Radhakrishnan A, Kumar N, Chou TH, Long F, Rajashankar KR et al (2015) Crystal structure of the Alcanivorax borkumensis YdaH transporter reveals an unusual topology. Nat Commun 6:6874. doi:10.1038/ncomms7874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Delmar JA, Yu EW (2016) The AbgT family: a novel class of antimetabolite transporters. Protein Sci 25:322–337. doi:10.1002/pro.2820

    Article  CAS  PubMed  Google Scholar 

  49. Pan W, Spratt BG (1994) Regulation of the permeability of the gonococcal cell envelope by the mtr system. Mol Microbiol 11:769–775. doi:10.1111/j.1365-2958.1994.tb00354.x

    Article  CAS  PubMed  Google Scholar 

  50. Maness MJ, Sparling PF (1973) Multiple antibiotic resistance due to a single mutation in Neisseria gonorrhoeae. J Infect Dis 128:321–330. doi:10.1093/infdis/128.3.321

    Article  CAS  PubMed  Google Scholar 

  51. Guymon LF, Walstad DL, Sparling PF (1978) Cell envelope alterations in antibiotic-sensitive and-resistant strains of Neisseria gonorrhoeae. J Bacteriol 136:391–401

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Grkovic S, Brown MH, Skurray RA (2002) Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 66:671–701. doi:10.1128/MMBR.66.4.671-701.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rouquette-Loughlin C, Stojiljkovic I, Hrobowski T, Balthazar JT, Shafer WM (2002) Inducible, but not constitutive, resistance of gonococci to hydrophobic agents due to the MtrC-MtrD-MtrE efflux pump requires TonB-ExbB-ExbD proteins. Antimicrob Agents Chemother 46:561–565. doi:10.1128/AAC.46.2.561-565.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lucas CE, Hagman KE, Levin JC, Stein DC, Shafer WM (1995) Importance of lipooligosaccharide structure in determining gonococcal resistance to hydrophobic antimicrobial agents resulting from the mtr efflux system. Mol Microbiol 16:1001–1009. doi:10.1111/j.1365-2958.1995.tb02325.x

    Article  CAS  PubMed  Google Scholar 

  55. Veal WL, Yellen A, Balthazar JT, Pan W, Spratt BG, Shafer WM (1998) Loss-of-function mutations in the mtr efflux system of Neisseria gonorrhoeae. Microbiology 144:621–627. doi:10.1099/00221287-144-3-621

    Article  CAS  PubMed  Google Scholar 

  56. Sarubbi FA Jr, Sparling PF, Blackman E, Lewis E (1975) Loss of low-level antibiotic resistance in Neisseria gonorrhoeae due to env mutations. J Bacteriol 124:750–756

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Olesky M, Zhao S, Rosenberg RL, Nicholas RA (2006) Porin-mediated antibiotic resistance in Neisseria gonorrhoeae: ion, solute, and antibiotic permeation through PIB proteins with penB mutations. J Bacteriol 188:2300–2308. doi:10.1128/JB.188.7.2300-2308.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Morse SA, Lysko PG, McFarland L, Knapp JS, Sandstrom E, Critchlow C, Holmes KK (1982) Gonococcal strains from homosexual men have outer membranes with reduced permeability to hydrophobic molecules. Infect Immun 37:432–438

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Nikaido H (1996) Multidrug efflux pumps of Gram-negative bacteria. J Bacteriol 178:5853–5859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hagman KE, Shafer WM (1995) Transcriptional control of the mtr efflux system of Neisseria gonorrhoeae. J Bacteriol 177:4162–4165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cousin SL Jr, Whittington WL, Roberts MC (2003) Acquired macrolide resistance genes and the 1 bp deletion in the mtrR promoter in Neisseria gonorrhoeae. J Antimicrob Chemother 51:131–133. doi:10.1093/jac/dkg040

    Article  CAS  PubMed  Google Scholar 

  62. Xia M, Whittington WL, Shafer WM, Holmes KK (2000) Gonorrhea among men who have sex with men: outbreak caused by a single genotype of erythromycin-resistant Neisseria gonorrhoeae with a single-base pair deletion in the mtrR promoter region. J Infect Dis 181:2080–2082. doi:10.1086/315510

    Article  CAS  PubMed  Google Scholar 

  63. Zarantonelli L, Borthagaray G, Lee EH, Veal W, Shafer WM (2001) Decreased susceptibility to azithromycin and erythromycin mediated by a novel mtr(R) promoter mutation in Neisseria gonorrhoeae. J Antimicrob Chemother 47:651–654. doi:10.1093/jac/47.5.651

    Article  CAS  PubMed  Google Scholar 

  64. Ohneck EA, Zalucki YM, Johnson PJ, Dhulipala V, Golparian D, Unemo M, Jerse AE, Shafer WM (2011) A novel mechanism of high-level, broad-spectrum antibiotic resistance caused by a single base pair change in Neisseria gonorrhoeae. mBio 2:e00187–11. doi:10.1128/mBio.00187-11

  65. Browning DF, Busby SJ (2004) The regulation of bacterial transcription initiation. Nat Rev Microbiol 2:57–65. doi:10.1038/nrmicro787

    Article  CAS  PubMed  Google Scholar 

  66. Ohneck EA, Goytia M, Rouquette-Loughlin CE, Joseph SJ, Read TD, Jerse AE, Shafer WM (2015) Over-production of the MtrCDE efflux pump in Neisseria gonorrhoeae produces unexpected changes in cellular transcription patterns. Antimicrob Agents Chemother 59:724–726. doi:10.1128/AAC.04148-14

    Article  CAS  PubMed  Google Scholar 

  67. Johnson SR, Sandul AL, Parekh M, Wang SA, Knapp JS, Trees DL (2003) Mutations causing in vitro resistance to azithromycin in Neisseria gonorrhoeae. Int J Antimicrob Agents 21:414–419. doi:10.1016/S0924-8579(03)00039-6

    Google Scholar 

  68. Correia FF, Inouye S, Inouye M (1988) A family of small repeated elements with some transposon-like properties in the genome of Neisseria gonorrhoeae. J Biol Chem 263:12194–12198

    CAS  PubMed  Google Scholar 

  69. Rouquette-Loughlin CE, Balthazar JT, Hill SA, Shafer WM (2004) Modulation of the mtrCDE-encoded efflux pump gene complex of Neisseria meningitidis due to a Correia element insertion sequence. Mol Microbiol 54:731–741. doi:10.1111/j.1365-2958.2004.04299.x

    Article  CAS  PubMed  Google Scholar 

  70. Enriquez R, Abad R, Chanto G, Corso A, Cruces R, Gabastou JM, Gorla MC, Maldonado A et al (2010) Deletion of the Correia element in the mtr gene complex of Neisseria meningitidis. J Med Microbiol 59:1055–1060. doi:10.1099/jmm.0.021220-0

    Article  CAS  PubMed  Google Scholar 

  71. Shine J, Dalgarno L (1975) Determinant of cistron specificity in bacterial ribosomes. Nature 254:34–38. doi:10.1038/254034a0

    Article  CAS  PubMed  Google Scholar 

  72. Lucas CE, Balthazar JT, Hagman KE, Shafer WM (1997) The MtrR repressor binds the DNA sequence between the mtrR and mtrC genes of Neisseria gonorrhoeae. J Bacteriol 179:4123–4128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hoffmann KM, Williams D, Shafer WM, Brennan RG (2005) Characterization of the multiple transferable resistance repressor, MtrR, from Neisseria gonorrhoeae. J Bacteriol 187:5008–5012. doi:10.1128/JB.187.14.5008-5012.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shafer WM, Balthazar JT, Hagman KE, Morse SA (1995) Missense mutations that alter the DNA-binding domain of the MtrR protein occur frequently in rectal isolates of Neisseria gonorrhoeae that are resistant to faecal lipids. Microbiology 141:907–911. doi:10.1099/13500872-141-4-907

    Article  CAS  PubMed  Google Scholar 

  75. Folster JP, Johnson PJ, Jackson L, Dhulipali V, Dyer DW, Shafer WM (2009) MtrR modulates rpoH expression and levels of antimicrobial resistance in Neisseria gonorrhoeae. J Bacteriol 191:287–297. doi:10.1128/JB.01165-08

    Article  CAS  PubMed  Google Scholar 

  76. Folster JP, Dhulipala V, Nicholas RA, Shafer WM (2007) Differential regulation of ponA and pilMNOPQ expression by the MtrR transcriptional regulatory protein in Neisseria gonorrhoeae. J Bacteriol 189:4569–4577. doi:10.1128/JB.00286-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Johnson PJT, Stringer VA, Shafer WM (2011) Off-target gene regulation mediated by transcriptional repressors of antimicrobial efflux pump genes in Neisseria gonorrhoeae. Antimicrob Agents Chemother 55:2559–2565. doi:10.1128/AAC.00010-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Johnson PJT, Shafer WM (2015) The transcriptional repressor, MtrR, of the efflux pump operon of Neisseria gonorrhoeae can also serve as an activator of “off target” gene (glnE) expression. Antibiotics 4:188–197. doi:10.3390/antibiotics4020188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee EH, Rouquette-Loughlin C, Folster JP, Shafer WM (2003) FarR regulates the farAB-encoded efflux pump of Neisseria gonorrhoeae via an MtrR regulatory mechanism. J Bacteriol 185:7145–7152. doi:10.1128/JB.185.24.7145-7152.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mercante AD, Jackson L, Johnson PJ, Stringer VA, Dyer DW, Shafer WM (2012) MpeR regulates the mtr efflux locus in Neisseria gonorrhoeae and modulates antimicrobial resistance by an iron-responsive mechanism. Antimicrob Agents Chemother 56:1491–1501. doi:10.1128/AAC.06112-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jackson LA, Ducey TF, Day MW, Zaitshik JB, Orvis J, Dyer DW (2010) Transcriptional and functional analysis of the Neisseria gonorrhoeae Fur regulon. J Bacteriol 192:77–85. doi:10.1128/JB.00741-09

    Article  CAS  PubMed  Google Scholar 

  82. Folster JP, Shafer WM (2005) Regulation of mtrF expression in Neisseria gonorrhoeae and its role in high-level antimicrobial resistance. J Bacteriol 187:3713–3720. doi:10.1128/JB.187.11.3713-3720.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hollander A, Mercante AD, Shafer WM, Cornelissen CN (2011) The iron-repressed, AraC-like regulator MpeR activates expression of fetA in Neisseria gonorrhoeae. Infect Immun 79:4764–4776. doi:10.1128/IAI.05806-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Carson SD, Klebba PE, Newton SM, Sparling PF (1999) Ferric enterobactin binding and utilization by Neisseria gonorrhoeae. J Bacteriol 181:2895–2901

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ariza RR, Li Z, Ringstad N, Demple B (1995) Activation of multiple antibiotic resistance and binding of stress-inducible promoters by Escherichia coli Rob protein. J Bacteriol 177:1655–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zalucki YM, Mercante AD, Cloward JM, Ohneck EA, Kandler JL, Goytia M, Johnson PJT, Shafer WM (2013) Function and regulation of Neisseria gonorrhoeae efflux pumps. In: Yu EW, Zhang Q, Brown MH (eds) Microbial efflux pumps: current research. Caister Academic Press, Poole, pp 207–221

    Google Scholar 

  87. Ezewudo MN, Joseph SJ, Castillo-Ramirez S, Dean D, Del Rio C, Didelot X, Dillon JA, Selden RF et al (2015) Population structure of Neisseria gonorrhoeae based on whole genome data and its relationship with antibiotic resistance. Peer J 3:e806. doi:10.7717/peerj.806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zalucki YM, Dhulipala V, Shafer WM (2012) Dueling regulatory properties of a transcriptional activator (MtrA) and repressor (MtrR) that control efflux pump gene expression in Neisseria gonorrhoeae. mBio 3:e00446–12. doi:10.1128/mBio.00446-12

  89. Lee EH, Hill SA, Napier R, Shafer WM (2006) Integration host factor is required for FarR repression of the farAB-encoded efflux pump of Neisseria gonorrhoeae. Mol Microbiol 60:1381–1400. doi:10.1111/j.1365-2958.2006.05185.x

    Article  CAS  PubMed  Google Scholar 

  90. Sparling PF, Sarubbi FA Jr, Blackman E (1975) Inheritance of low-level resistance to penicillin, tetracycline, and chloramphenicol in Neisseria gonorrhoeae. J Bacteriol 124:740–749

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Tomberg J, Unemo M, Davies C, Nicholas RA (2010) Molecular and structural analysis of mosaic variants of penicillin-binding protein 2 conferring decreased susceptibility to expanded-spectrum cephalosporins in Neisseria gonorrhoeae: role of epistatic mutations. Biochemistry 49:8062–8070. doi:10.1021/bi101167x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ropp PA, Hu M, Olesky M, Nicholas RA (2002) Mutations in ponA, the gene encoding penicillin-binding protein 1, and a novel locus, penC, are required for high-level chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 46:769–777. doi:10.1128/AAC.46.3.769-777.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Olesky M, Hobbs M, Nicholas RA (2002) Identification and analysis of amino acid mutations in porin IB that mediate intermediate-level resistance to penicillin and tetracycline in Neisseria gonorrhoeae. Antimicrob Agents Chemother 46:2811–2820. doi:10.1128/AAC.46.9.2811-2820.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Faruki H, Kohmescher RN, McKinney WP, Sparling PF (1985) A community-based outbreak of infection with penicillin-resistant Neisseria gonorrhoeae not producing penicillinase (chromosomally mediated resistance). N Engl J Med 313:607–611. doi:10.1056/NEJM198509053131004

    Article  CAS  PubMed  Google Scholar 

  95. Ohnishi M, Golparian D, Shimuta K, Saika T, Hoshina S, Iwasaku K, Nakayama S, Kitawaki J et al (2011) Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea?: Detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob Agents Chemother 55:3538–3545. doi:10.1128/AAC.00325-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu Y, Feinen B, Russell MW (2011) New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host. Front Microbiol 2:52. doi:10.3389/fmicb.2011.00052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Klose KE, Mekalanos JJ (1997) Simultaneous prevention of glutamine synthesis and high-affinity transport attenuates Salmonella typhimurium virulence. Infect Immun 65:587–596

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kunz AN, Begum AA, Wu H, D’Ambrozio JA, Robinson JM, Shafer WM, Bash MC, Jerse AE (2012) Impact of fluoroquinolone resistance mutations on gonococcal fitness and in vivo selection for compensatory mutations. J Infect Dis 205:1821–1829. doi:10.1093/infdis/jis277

    Google Scholar 

  99. Lomovskaya O, Bostian KA (2006) Practical applications and feasibility of efflux pump inhibitors in the clinic – a vision for applied use. Biochem Pharmacol 71:910–918. doi:10.1016/j.bcp.2005.12.008

    Article  CAS  PubMed  Google Scholar 

  100. Blair JM, Richmond GE, Piddock LJ (2014) Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol 9:1165–1177. doi:10.2217/fmb.14.66

    Article  CAS  PubMed  Google Scholar 

  101. Jerse AE, Deal CD (2013) Vaccine research for gonococcal infections: where are we? Sex Transm Infect 89(Suppl 4):v63–v68. doi:10.1136/sextrans-2013-051225

    Article  Google Scholar 

Download references

Acknowledgments

We thank all past and present members of our laboratories and our collaborators who have contributed significantly to the work reviewed herein. We are grateful to V. Bavro for communicating information regarding the mtrE sequence of N. gonorrhoeae. This work was supported by NIH grants R37 AI021150 (W.M.S.), R01 AI114629 (E.W.Y.), RO1 AI42053 (A.E.J.), and U19 AI113170 (A.E.J.) and funds from the Örebro County Council Research Committee and the Foundation for Medical Research at Örebro University Hospital, Sweden (M.U.). W.M.S. is the recipient of a Senior Research Career Scientist Award from the Biomedical Laboratory Research and Development Service of the Department of Veterans Affairs. The contents of this chapter do not represent the views of the Department of Veterans Affairs, the National Institutes of Health, or the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Shafer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shafer, W.M., Yu, E.W., Rouquette-Loughlin, C., Golparian, D., Jerse, A.E., Unemo, M. (2016). Efflux Pumps in Neisseria gonorrhoeae: Contributions to Antimicrobial Resistance and Virulence. In: Li, XZ., Elkins, C., Zgurskaya, H. (eds) Efflux-Mediated Antimicrobial Resistance in Bacteria. Adis, Cham. https://doi.org/10.1007/978-3-319-39658-3_17

Download citation

Publish with us

Policies and ethics