Skip to main content

Antimicrobial Drug Efflux Pumps in Stenotrophomonas maltophilia

  • Chapter
  • First Online:
Efflux-Mediated Antimicrobial Resistance in Bacteria

Abstract

Stenotrophomonas maltophilia is an emerging opportunistic pathogen with an environmental origin. One of the most cumbersome characteristics of S. maltophilia is its natural low susceptibility to different antimicrobial agents that are currently in use in the clinical practice. Because of that, this species is considered as a prototype of intrinsically resistant microorganism. Part of its capability to resist the action of antimicrobials resides in a number of chromosomally encoded efflux pumps. Notably, overexpression of some of these efflux pumps can confer clinically relevant resistance to quinolones. This is likely the reason why, in contrast to other pathogens, no S. maltophilia-resistant isolates have been found presenting mutations in the genes encoding bacterial topoisomerases. Along this chapter, we describe different efflux pumps that have been so far reported in S. maltophilia as well as the mechanisms that allow their regulation. The clinical relevance these efflux pumps may have for the success of S. maltophilia in producing infections in patients is also discussed. Finally, we focus on the function that efflux pumps may have in the adaptation of S. maltophilia to nonclinical ecosystems, such as rhizosphere, where antimicrobial selective pressure is likely low.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sánchez MB, Hernández A, Martínez JL (2009) Stenotrophomonas maltophilia drug resistance. Future Microbiol 4:655–660. doi:10.2217/fmb.09.45

    Article  PubMed  Google Scholar 

  2. Sánchez MB (2015) Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia. Front Microbiol 6:658. doi:10.3389/fmicb.2015.00658

    Article  PubMed  PubMed Central  Google Scholar 

  3. Quinn JP (1998) Clinical problems posed by multiresistant nonfermenting Gram-negative pathogens. Clin Infect Dis 27(Suppl 1):S117–S124. doi:10.1086/514912

    Google Scholar 

  4. Brooke JS (2012) Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 25:2–41. doi:10.1128/CMR.00019-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Walsh TR, Macgowan AP, Bennett, P.M. (1997). Sequence analysis and enzyme kinetics of the L2 serine β-lactamase from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 41:1460–1464.

    Google Scholar 

  6. Avison MB, Higgins CS, Ford PJ, von Heldreich CJ, Walsh TR, Bennett PM (2002) Differential regulation of L1 and L2 β-lactamase expression in Stenotrophomonas maltophilia. J Antimicrob Chemother 49:387–389. doi:10.1093/jac/49.2.387

    Article  CAS  PubMed  Google Scholar 

  7. Okazaki A, Avison MB (2007) Aph(3′)-IIc, an aminoglycoside resistance determinant from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 51:359–360. doi:10.1128/AAC.00795-06

    Article  CAS  PubMed  Google Scholar 

  8. Lambert T, Ploy MC, Denis F, Courvalin P (1999) Characterization of the chromosomal aac(6′)-Iz gene of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 43:2366–2371

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Li X-Z, Zhang L, McKay GA, Poole K (2003) Role of the acetyltransferase AAC(6′)-Iz modifying enzyme in aminoglycoside resistance in Stenotrophomonas maltophilia. J Antimicrob Chemother 51:803–811. doi:10.1093/jac/dkg148

    Article  CAS  PubMed  Google Scholar 

  10. Sánchez MB, Hernández A, Rodríguez-Martínez JM, Martínez-Martínez L, Martínez JL (2008) Predictive analysis of transmissible quinolone resistance indicates Stenotrophomonas maltophilia as a potential source of a novel family of Qnr determinants. BMC Microbiol 8:148. doi:10.1186/1471-2180-8-148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shimizu K, Kikuchi K, Sasaki T, Takahashi N, Ohtsuka M, Ono Y, Hiramatsu K (2008) Smqnr, a new chromosome-carried quinolone resistance gene in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 52:3823–3825. doi:10.1128/AAC.00026-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sánchez MB, Martínez JL (2010) SmQnr contributes to intrinsic resistance to quinolones in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 54:580–581. doi:10.1128/AAC.00496-09

    Article  CAS  PubMed  Google Scholar 

  13. Crossman LC, Gould VC, Dow JM, Vernikos GS, Okazaki A, Sebaihia M, Saunders D, Arrowsmith C et al (2008) The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 9:R74. doi:10.1186/gb-2008-9-4-r74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martínez JL, Sánchez MB, Martínez-Solano L, Hernández A, Garmendia L, Fajardo A, Alvarez-Ortega C (2009) Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 33:430–449. doi:10.1111/j.1574-6976.2008.00157.x

    Article  CAS  PubMed  Google Scholar 

  15. Martínez JL, Fajardo A, Garmendia L, Hernández A, Linares JF, Martinez-Solano L, Sánchez MB (2009) A global view of antibiotic resistance. FEMS Microbiol Rev 33:44–65. doi:10.1111/j.1574-6976.2008.00142.x

    Article  CAS  PubMed  Google Scholar 

  16. Fajardo A, Linares JF, Martinez JL (2009) Towards an ecological approach to antibiotics and antibiotic resistance genes. Clin Microbiol Infect 15(Suppl 1):14–16. doi:10.1111/j.1469-0691.2008.02688.x

    Article  PubMed  Google Scholar 

  17. Baquero F, Alvarez-Ortega C, Martínez JL (2009) Ecology and evolution of antibiotic resistance. Environ Microbiol Rep 1:469–476. doi:10.1111/j.1758-2229.2009.00053.x

    Article  CAS  PubMed  Google Scholar 

  18. García-León G, Hernández A, Hernando-Amado S, Alavi P, Berg G, Martínez JL (2014) A function of SmeDEF, the major quinolone resistance determinant of Stenotrophomonas maltophilia, is the colonization of the roots of the plants. Appl Environ Microbiol 80:4559–4565. doi:10.1128/AEM.01058-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alonso A, Martínez JL (2000) Cloning and characterization of SmeDEF, a novel multidrug efflux pump from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 44:3079–3086. doi:10.1128/AAC.44.11.3079-3086.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li X-Z, Zhang L, Poole K (2002) SmeC, an outer membrane multidrug efflux protein of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 46:333–343. doi:10.1128/AAC.46.2.333-343.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mine T, Morita Y, Kataoka A, Mizushima T, Tsuchiya T (1999) Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob Agents Chemother 43:415–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T (2000) Contribution of the MexX-MexY-OprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:2242–2246. doi:10.1128/AAC.44.9.2242-2246.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gotoh N, Tsujimoto H, Poole K, Yamagishi J, Nishino T (1995) The outer membrane protein OprM of Pseudomonas aeruginosa is encoded by oprK of the mexA-mexB-oprK multidrug resistance operon. Antimicrob Agents Chemother 39:2567–2569. doi:10.1128/AAC.39.11.2567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grkovic S, Brown MH, Skurray RA (2002) Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 66:671–701. doi:10.1128/MMBR.66.4.671-701.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang L, Li X-Z, Poole K (2001) SmeDEF multidrug efflux pump contributes to intrinsic multidrug resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 45:3497–3503. doi:10.1128/AAC.45.12.3497-3503.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gould VC, Okazaki A, Avison MB (2013) Coordinate hyperproduction of SmeZ and SmeJK efflux pumps extends drug resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 57:655–657. doi:10.1128/AAC.01020-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin CW, Huang YW, Hu RM, Yang TC (2014) SmeOP-TolCsm efflux pump contributes to the multidrug resistance of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 58:2405–2408. doi:10.1128/AAC.01974-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. García-León G, Salgado F, Oliveros JC, Sánchez MB, Martínez JL (2014) Interplay between intrinsic and acquired resistance to quinolones in Stenotrophomonas maltophilia. Environ Microbiol 16:1282–1296. doi:10.1111/1462-2920.12408

    Article  CAS  PubMed  Google Scholar 

  29. Chen CH, Huang CC, Chung TC, Hu RM, Huang YW, Yang TC (2011) Contribution of resistance-nodulation-division efflux pump operon smeU1-V-W-U2-X to multidrug resistance of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 55:5826–5833. doi:10.1128/AAC.00317-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lin YT, Huang YW, Chen SJ, Chang CW, Yang TC (2015) SmeYZ efflux pump of Stenotrophomonas maltophilia contributes to drug resistance, virulence-related characteristics, and virulence to mice. Antimicrob Agents Chemother 59:4067–4073. doi:10.1128/aac.00372-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang YW, Hu RM, Chu FY, Lin HR, Yang TC (2013) Characterization of a major facilitator superfamily (MFS) tripartite efflux pump EmrCABsm from Stenotrophomonas maltophilia. J Antimicrob Chemother 68:2498–2505. doi:10.1093/jac/dkt250

    Article  CAS  PubMed  Google Scholar 

  32. Chang YC, Tsai MJ, Huang YW, Chung TC, Yang TC (2011) SmQnrR, a DeoR-type transcriptional regulator, negatively regulates the expression of Smqnr and SmtcrA in Stenotrophomonas maltophilia. J Antimicrob Chemother 66:1024–1028. doi:10.1093/jac/dkr049

    Article  CAS  PubMed  Google Scholar 

  33. Al-Hamad A, Upton M, Burnie J (2009) Molecular cloning and characterization of SmrA, a novel ABC multidrug efflux pump from Stenotrophomonas maltophilia. J Antimicrob Chemother 64:731–734. doi:10.1093/jac/dkp271

    Article  CAS  PubMed  Google Scholar 

  34. Lin YT, Huang YW, Liou RS, Chang YC, Yang TC (2014) MacABCsm, an ABC-type tripartite efflux pump of Stenotrophomonas maltophilia involved in drug resistance, oxidative and envelope stress tolerances and biofilm formation. J Antimicrob Chemother 69:3221–3226. doi:10.1093/jac/dku317

    Article  CAS  PubMed  Google Scholar 

  35. Sánchez MB, Martínez JL (2015) The efflux pump SmeDEF contributes to trimethoprim-sulfamethoxazole resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 59:4347–4348. doi:10.1128/AAC.00714-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sánchez P, Moreno E, Martínez JL (2005) The biocide triclosan selects Stenotrophomonas maltophilia mutants that overproduce the SmeDEF multidrug efflux pump. Antimicrob Agents Chemother 49:781–782. doi:10.1128/AAC.49.2.781-782.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hernández A, Ruiz FM, Romero A, Martínez JL (2011) The binding of triclosan to SmeT, the repressor of the multidrug efflux pump SmeDEF, induces antibiotic resistance in Stenotrophomonas maltophilia. PLoS Pathog 7:e1002103. doi:10.1371/journal.ppat.1002103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alonso A, Martínez JL (2001) Expression of multidrug efflux pump SmeDEF by clinical isolates of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 45:1879–1881. doi:10.1128/AAC.45.6.1879-1881.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang YW, Hu RM, Yang TC (2013) Role of the pcm-tolCsm operon in the multidrug resistance of Stenotrophomonas maltophilia. J Antimicrob Chemother 68:1987–1993. doi:10.1093/jac/dkt148

    Article  CAS  PubMed  Google Scholar 

  40. Al-Hamad A, Burnie J, Upton M (2011) Enhancement of antibiotic susceptibility of Stenotrophomonas maltophilia using a polyclonal antibody developed against an ABC multidrug efflux pump. Can J Microbiol 57:820–828. doi:10.1139/w11-076

    Article  CAS  PubMed  Google Scholar 

  41. Srijaruskul K, Charoenlap N, Namchaiw P, Chattrakarn S, Giengkam S, Mongkolsuk S, Vattanaviboon P (2015) Regulation by SoxR of mfsA, which encodes a major facilitator protein involved in paraquat resistance in Stenotrophomonas maltophilia. PLoS One 10:e0123699. doi:10.1371/journal.pone.0123699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sánchez MB, Martínez JL (2015) Regulation of Smqnr expression by SmqnrR is strain-specific in Stenotrophomonas maltophilia. J Antimicrob Chemother 70:2913–2914. doi:10.1093/jac/dkv196

    Article  CAS  PubMed  Google Scholar 

  43. Evans K, Passador L, Srikumar R, Tsang E, Nezezon J, Poole K (1998) Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa. J Bacteriol 180:5443–5447

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Köhler T, van Delden C, Curty LK, Hamzehpour MM, Pechère JC (2001) Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J Bacteriol 183:5213–5222. doi:10.1128/JB.183.18.5213-5222.2001

    Article  PubMed  PubMed Central  Google Scholar 

  45. Olivares J, Alvarez-Ortega C, Linares JF, Rojo F, Köhler T, Martínez JL (2012) Overproduction of the multidrug efflux pump MexEF-OprN does not impair Pseudomonas aeruginosa fitness in competition tests, but produces specific changes in bacterial regulatory networks. Environ Microbiol 14:1968–1981. doi:10.1111/j.1462-2920.2012.02727.x

    Article  CAS  PubMed  Google Scholar 

  46. Sánchez P, Alonso A, Martínez JL (2002) Cloning and characterization of SmeT, a repressor of the Stenotrophomonas maltophilia multidrug efflux pump SmeDEF. Antimicrob Agents Chemother 46:3386–3393. doi:10.1128/AAC.46.11.3386-3393.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sánchez P, Alonso A, Martínez JL (2004) Regulatory regions of smeDEF in Stenotrophomonas maltophilia strains expressing different amounts of the multidrug efflux pump SmeDEF. Antimicrob Agents Chemother 48:2274–2276. doi:10.1128/AAC.48.6.2274-2276.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chang LL, Chen HF, Chang CY, Lee TM, Wu WJ (2004) Contribution of integrons, and SmeABC and SmeDEF efflux pumps to multidrug resistance in clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother 53:518–521. doi:10.1093/jac/dkh094

    Article  CAS  PubMed  Google Scholar 

  49. Gould IM (2010) Coping with antibiotic resistance: the impending crisis. Int J Antimicrob Agents 36(Suppl 3):S1–S2. doi:10.1016/S0924-8579(10)00497-8

    Article  CAS  PubMed  Google Scholar 

  50. Cho HH, Sung JY, Kwon KC, Koo SH (2012) Expression of Sme efflux pumps and multilocus sequence typing in clinical isolates of Stenotrophomonas maltophilia. Ann Lab Med 32:38–43. doi:10.3343/alm.2012.32.1.38

    Article  CAS  PubMed  Google Scholar 

  51. Liaw SJ, Lee YL, Hsueh PR (2010) Multidrug resistance in clinical isolates of Stenotrophomonas maltophilia: roles of integrons, efflux pumps, phosphoglucomutase (SpgM), and melanin and biofilm formation. Int J Antimicrob Agents 35:126–130. doi:10.1016/j.ijantimicag.2009.09.015

    Article  CAS  PubMed  Google Scholar 

  52. García-León G, Ruiz de Alegria Puig C, Garcia de la Fuente C, Martínez-Martínez L, Martínez JL, Sánchez MB (2015) High-level quinolone resistance is associated with the overexpression of smeVWX in Stenotrophomonas maltophilia clinical isolates. Clin Microbiol Infect 21:464–467. doi:10.1016/j.cmi.2015.01.007

    Article  CAS  PubMed  Google Scholar 

  53. Hernández A, Mate MJ, Sánchez-Diaz PC, Romero A, Rojo F, Martínez JL (2009) Structural and functional analysis of SmeT, the repressor of the Stenotrophomonas maltophilia multidrug efflux pump SmeDEF. J Biol Chem 284:14428–14438. doi:10.1074/jbc.M809221200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sánchez MB, Decorosi F, Viti C, Oggioni MR, Martinez JL, Hernández A (2015) Predictive studies suggest that the risk for the selection of antibiotic resistance by biocides is likely low in Stenotrophomonas maltophilia. PLoS One 10:e0132816. doi:10.1371/journal.pone.0132816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sánchez P, Le U, Martínez JL (2003) The efflux pump inhibitor Phe-Arg-β-naphthylamide does not abolish the activity of the Stenotrophomonas maltophilia SmeDEF multidrug efflux pump. J Antimicrob Chemother 51:1042–1045. doi:10.1093/jac/dkg181

    Article  CAS  PubMed  Google Scholar 

  56. Gould VC, Avison MB (2006) SmeDEF-mediated antimicrobial drug resistance in Stenotrophomonas maltophilia clinical isolates having defined phylogenetic relationships. J Antimicrob Chemother 57:1070–1076. doi:10.1093/jac/dkl106

    Article  CAS  PubMed  Google Scholar 

  57. Barlow M, Hall BG (2002) Predicting evolutionary potential: in vitro evolution accurately reproduces natural evolution of the TEM β-lactamase. Genetics 160:823–832

    Google Scholar 

  58. Hall BG (2004) Predicting the evolution of antibiotic resistance genes. Nat Rev Microbiol 2:430–435. doi:10.1038/nrmicro888

    Article  CAS  PubMed  Google Scholar 

  59. Martínez JL, Baquero F, Andersson DI (2007) Predicting antibiotic resistance. Nat Rev Microbiol 5:958–965. doi:10.1038/nrmicro1796

    Article  CAS  PubMed  Google Scholar 

  60. Martínez JL, Baquero F, Andersson DI (2011) Beyond serial passages: new methods for predicting the emergence of resistance to novel antibiotics. Curr Opin Pharmacol 11:439–445. doi:10.1016/j.coph.2011.07.005

    Article  CAS  PubMed  Google Scholar 

  61. Deitz WH, Bailey JH, Froelich EJ (1963) In vitro antibacterial properties of nalidixic acid, a new drug active against Gram-negative organisms. Antimicrob Agents Chemother (Bethesda) 161:583–587

    Google Scholar 

  62. Hernández A, Sánchez MB, Martínez JL (2011) Quinolone resistance: much more than predicted. Front Microbiol 2:22. doi:10.3389/fmicb.2011.00022

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ribera A, Domenech-Sanchez A, Ruiz J, Benedi VJ, Jimenez de Anta MT, Vila J (2002) Mutations in gyrA and parC QRDRs are not relevant for quinolone resistance in epidemiological unrelated Stenotrophomonas maltophilia clinical isolates. Microb Drug Resist 8:245–251. doi:10.1089/10766290260469499

    Article  CAS  PubMed  Google Scholar 

  64. Valdezate S, Vindel A, Echeita A, Baquero F, Cantó R (2002) Topoisomerase II and IV quinolone resistance-determining regions in Stenotrophomonas maltophilia clinical isolates with different levels of quinolone susceptibility. Antimicrob Agents Chemother 46:665–671. doi:10.1128/AAC.46.3.665-671.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Valdezate S, Vindel A, Saez-Nieto JA, Baquero F, Cantó R (2005) Preservation of topoisomerase genetic sequences during in vivo and in vitro development of high-level resistance to ciprofloxacin in isogenic Stenotrophomonas maltophilia strains. J Antimicrob Chemother 56:220–223. doi:10.1093/jac/dki182

    Google Scholar 

  66. Alonso A, Morales G, Escalante R, Campanario E, Sastre L, Martínez JL (2004) Overexpression of the multidrug efflux pump SmeDEF impairs Stenotrophomonas maltophilia physiology. J Antimicrob Chemother 53:432–434. doi:10.1093/jac/dkh074

    Article  CAS  PubMed  Google Scholar 

  67. Andersson DI, Hughes D (2011) Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol Rev 35:901–911. doi:10.1111/j.1574-6976.2011.00289.x

    Article  CAS  PubMed  Google Scholar 

  68. Martínez JL, Coque TM, Baquero F (2015) What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol 13:116–123. doi:10.1038/nrmicro3399

    Article  CAS  PubMed  Google Scholar 

  69. Pak TR, Altman DR, Attie O, Sebra R, Hamula CL, Lewis M, Deikus G, Newman LC et al (2015) Whole-genome sequencing identifies emergence of a quinolone resistance mutation in a case of Stenotrophomonas maltophilia bacteremia. Antimicrob Agents Chemother 59:7117–7120. doi:10.1128/AAC.01723-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339. doi:10.1016/S0168-6445(03)00048-2

    Article  CAS  PubMed  Google Scholar 

  71. Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in Gram-negative bacteria. Annu Rev Microbiol 56:743–768. doi:10.1146/annurev.micro.56.012302.161038

    Article  CAS  PubMed  Google Scholar 

  72. DeMarco CE, Cushing LA, Frempong-Manso E, Seo SM, Jaravaza TA, Kaatz GW (2007) Efflux-related resistance to norfloxacin, dyes, and biocides in bloodstream isolates of Staphylococcus aureus. Antimicrob Agents Chemother 51:3235–3239. doi:10.1128/AAC.00430-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Buckley AM, Webber MA, Cooles S, Randall LP, La Ragione RM, Woodward MJ, Piddock LJ (2006) The AcrAB-TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis. Cell Microbiol 8:847–856. doi:10.1111/j.1462-5822.2005.00671.x

    Article  CAS  PubMed  Google Scholar 

  74. Palumbo JD, Kado CI, Phillips DA (1998) An isoflavonoid-inducible efflux pump in Agrobacterium tumefaciens is involved in competitive colonization of roots. J Bacteriol 180:3107–3113

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Burse A, Weingart H, Ullrich MS (2004) NorM, an Erwinia amylovora multidrug efflux pump involved in in vitro competition with other epiphytic bacteria. Appl Environ Microbiol 70:693–703. doi:10.1128/AEM.70.2.693-703.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847. doi:10.1038/35081178

    Article  CAS  PubMed  Google Scholar 

  77. Espinosa-Urgel M, Kolter R, Ramos JL (2002) Root colonization by Pseudomonas putida: love at first sight. Microbiology 148:341–343. doi:10.1099/00221287-148-2-341

    Article  CAS  PubMed  Google Scholar 

  78. Gould SJ, Vrba S (1982) Exaptation: a missing term in the science of form. Paleobiology 8:4–15

    Article  Google Scholar 

  79. Barber CE, Tang JL, Feng JX, Pan MQ, Wilson TJ, Slater H, Dow JM, Williams P et al (1997) A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol 24:555–566. doi:10.1046/j.1365-2958.1997.3721736.x

    Article  CAS  PubMed  Google Scholar 

  80. Alavi P, Muller H, Cardinale M, Zachow C, Sanchez MB, Martinez JL, Berg G (2013) The DSF quorum sensing system controls the positive influence of Stenotrophomonas maltophilia on plants. PLoS One 8:e67103. doi:10.1371/journal.pone.0067103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Huang YW, Liou RS, Lin YT, Huang HH, Yang TC (2014) A linkage between SmeIJK efflux pump, cell envelope integrity, and σE-mediated envelope stress response in Stenotrophomonas maltophilia. PLoS One 9:e111784. doi:10.1371/journal.pone.0111784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhu B, Liu H, Tian WX, Fan XY, Li B, Zhou XP, Jin GL, Xie GL (2012) Genome sequence of Stenotrophomonas maltophilia RR-10, isolated as an endophyte from rice root. J Bacteriol 194:1280–1281. doi:10.1128/JB.06702-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory is supported by grants from the Spanish Ministry of Economy and Competitiveness (BIO2014-54507-R), from the Madrid Autonomous Community (S2010/BMD2414 (PROMPT)), from the Instituto de Salud Carlos III (Spanish Network for Research on Infectious Diseases (REIPI RD12/0015)), and from the European Union (HEALTH-F3-2011-282004 (EVOTAR)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sánchez, M.B., García-León, G., Hernández, A., Martínez, J.L. (2016). Antimicrobial Drug Efflux Pumps in Stenotrophomonas maltophilia . In: Li, XZ., Elkins, C., Zgurskaya, H. (eds) Efflux-Mediated Antimicrobial Resistance in Bacteria. Adis, Cham. https://doi.org/10.1007/978-3-319-39658-3_15

Download citation

Publish with us

Policies and ethics