Advertisement

Variable Neighbourhood Descent with Memory: A Hybrid Metaheuristic for Supermarket Resupply

  • Philip MourdjisEmail author
  • Yujie Chen
  • Fiona Polack
  • Peter Cowling
  • Martin Robinson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9668)

Abstract

Supermarket supply chains represent an area in which optimisation of vehicle routes and scheduling can lead to huge cost and environmental savings. As just-in-time ordering practices become more common, traditionally fixed resupply routes and schedules are increasingly unable to meet the demands of the supermarkets. Instead, we model this as a dynamic pickup and delivery problem with soft time windows (PDPSTW). We present the variable neighbourhood descent with memory (VNDM) hybrid metaheuristic (HM) and compare its performance against Q-learning (QL), binary exponential back off (BEBO) and random descent (RD) hyperheuristics on published benchmark and real-world instances of the PDPSTW. We find that VNDM consistently generates the highest quality solutions, with the fewest routes or shortest distances, amongst the methods tested. It is capable of finding the best known solutions to 55 of 176 published benchmarks as well as producing the best results on our real-world data set, supplied by Transfaction Ltd.

Notes

Acknowledgements

This work has been funded by the Large Scale Complex IT Systems (LSCITS) project of the EPSRC with help from Transfaction Ltd.

References

  1. 1.
    Belhaiza, S., Hansen, P., Laporte, G.: A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows. Comput. Oper. Res. 52(part B), 269–281 (2013)Google Scholar
  2. 2.
    Bent, R., Van Hentenryck, P.: A two-stage hybrid algorithm for pickup and delivery vehicle routing problems with time windows. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 123–137. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Blocho, M.: A parallel algorithm for minimizing the fleet size in the pickup and delivery problem with time windows. In: Proceedings of the 22nd European MPI Users’ Group Meeting, pp. 20–21. ACM (2015)Google Scholar
  4. 4.
    Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combinatorial optimization: a survey. Appl. Soft Comput. 11(6), 4135–4151 (2011)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bräysy, O.: A reactive variable neighborhood search for the vehicle-routing problem with time windows. INFORMS J. Comput. 15(4), 347–368 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Carić, T., Fosin, J., Galić, A., Gold, H., Reinholz, A.: Empirical analysis of two different metaheuristics for real-world vehicle routing problems. In: Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) HCI/ICCV 2007. LNCS, vol. 4771, pp. 31–44. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Cherkesly, M., Desaulniers, G., Laporte, G.: Branch-price-and-cut algorithns for the pickup and delivery problem with time windows and LIFO loading. Comput. Oper. Res. 62(1), 23–35 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cordeau, J.F., Laporte, G.: A tabu search heuristic for the static multi-vehicle dial-a-ride problem. Transp. Res. Part B Methodol. 37, 579–594 (2003)CrossRefGoogle Scholar
  9. 9.
    Cowling, P.I., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Desaulniers, G., Desrosiers, J., Solomon, M.M., Erdmann, A., Soumis, F.: VRP with pickup and delivery. In: Toth, P., Vigo, D. (eds.) The Vehicle Routing Problem, pp. 225–242. SIAM, Philadelphia (2002)CrossRefGoogle Scholar
  11. 11.
    Dorer, K., Calisti, M.: An adaptive approach to dynamic transport optimization. In: Klugl, F., Bazzan, A., Ossowski, S. (eds.) Applications of Agent Technology in Traffic and Transportation. Whitestein Series in Software Agent Technologies, pp. 33–49. Birkhäuser, Basel (2005)CrossRefGoogle Scholar
  12. 12.
    Dumas, Y., Desrosiers, J., Soumis, F.: The pickup and delivery problem with time windows. Eur. J. Oper. Res. 54(1), 7–22 (1991)CrossRefzbMATHGoogle Scholar
  13. 13.
    Gendreau, M., Hertz, A., Laporte, G.: New insertion and post optimization procedures for the traveling salesman problem. Oper. Res. 40(6), 1086–1095 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gschwind, T., Irnich, S., Mainz, D.: Effective Handling of Dynamic Time Windows and Synchronization with Precedences for Exact Vehicle Routing. Technical report, Johannes Gutenberg University Mainz, Mainz, Germany. Retrieved from (2012). http://logistik.bwl.uni-mainz.de/
  15. 15.
    Hasle, G., Lie, K.A., Quak, E.: Geometric Modelling, Numerical Simuation, and Optimization. Applied Mathematics at SINTEF, vol. 54. Springer, Heidelberg (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Hosny, M.I.: Investigating Heuristic and Meta-Heuristic Algorithms for Solving Pickup and Delivery Problems Manar Ibrahim Hosny School of Computer Science & Informatics. Ph.D. thesis, Cardiff University (2010)Google Scholar
  17. 17.
    Koning, D.: Using Column Generation for the Pickup and Delivery Problem with Disturbances. Masters thesis, Universiteit Utrecht (2011)Google Scholar
  18. 18.
    Laporte, G.: Fifty years of vehicle routing. Transp. Sci. 43(4), 408–416 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Li, H., Lim, A.: A metaheuristic for the pickup and delivery problem with time windows. In: Tools with Artificial Intelligence, pp. 160–167. IEEE (2001)Google Scholar
  20. 20.
    Ostertag, A., Doerner, K.F., Hartl, R.F.: A variable neighborhood search integrated in the POPMUSIC framework for solving large scale vehicle routing problems. In: Blesa, M.J., Blum, C., Cotta, C., Fernández, A.J., Gallardo, J.E., Roli, A., Sampels, M. (eds.) HM 2008. LNCS, vol. 5296, pp. 29–42. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Paraskevopoulos, D.C., Repoussis, P.P., Tarantilis, C.D., Ioannou, G., Prastacos, G.P.: A reactive variable neighborhood tabu search for the heterogeneous fleet vehicle routing problem with time windows. J. Heuristics 14(5), 425–455 (2008)CrossRefzbMATHGoogle Scholar
  22. 22.
    Parragh, S.N., Doerner, K.F., Hartl, R.F.: Variable neighborhood search for the dial-a-ride problem. Comput. Oper. Res. 37(6), 1129–1138 (2009)CrossRefzbMATHGoogle Scholar
  23. 23.
    Pirkwieser, S., Raidl, G.R.: Multiple variable neighborhood search enriched with ILP techniques for the periodic vehicle routing problem with time windows. In: Blesa, M.J., Blum, C., Di Gaspero, L., Roli, A., Sampels, M., Schaerf, A. (eds.) HM 2009. LNCS, vol. 5818, pp. 45–59. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Remde, S., Cowling, P.I., Dahal, K., Colledge, N., Selensky, E.: An empirical study of hyperheuristics for managing very large sets of low level heuristics. J. Oper. Res. Soc. 63(3), 392–405 (2011)CrossRefGoogle Scholar
  26. 26.
    Repoussis, P.P., Paraskevopoulos, D.C., Tarantilis, C.D., Ioannou, G.: A reactive greedy randomized variable neighborhood tabu search for the vehicle routing problem with time windows. In: Almeida, F., Blesa Aguilera, M.J., Blum, C., Moreno Vega, J.M., Pérez Pérez, M., Roli, A., Sampels, M. (eds.) HM 2006. LNCS, vol. 4030, pp. 124–138. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2005)CrossRefGoogle Scholar
  28. 28.
    Savelsbergh, M.W.P.: The vehicle routing problem with time windows: minimizing route duration. INFORMS J. Comput. 4(2), 146–154 (1992)CrossRefzbMATHGoogle Scholar
  29. 29.
    Statistica: Number of stores of leading grocery retailers in the United Kingdom (UK) as of (2013). http://www.statista.com/statistics/299155/number-of-stores-of-grocery-retailers-supermarkets-united-kingdom-uk/
  30. 30.
    TetraSoft, A.: MapBooking Algoritm for Pickup and Delivery Solutions with Time Windows and Capacity restraints. (2003). http://www.tetrasoft.dk/english-info/
  31. 31.
    Toth, P., Vigo, D.: Heuristic algorithms for the handicapped persons transportation problem. Transp. Sci. 31(1), 60–71 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)zbMATHGoogle Scholar
  33. 33.
    Xu, H., Chen, Z.L., Rajagopal, S., Arunapuram, S.: Solving a practical pickup and delivery problem. Transp. Sci. 37(3), 347–364 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Philip Mourdjis
    • 1
    Email author
  • Yujie Chen
    • 1
  • Fiona Polack
    • 1
  • Peter Cowling
    • 1
  • Martin Robinson
    • 2
  1. 1.Department of Computer ScienceUniversity of YorkYorkUK
  2. 2.Transfaction Ltd.CambridgeUK

Personalised recommendations