Advertisement

Robust Berth Allocation Using a Hybrid Approach Combining Branch-and-Cut and the Genetic Algorithm

  • Ghazwan AlsoufiEmail author
  • Xinan Yang
  • Abdellah Salhi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9668)

Abstract

Seaside operations at container ports often suffer from uncertainty due to events such as the variation in arrival and/or processing time of vessels, weather conditions and others. Finding a robust plan which can accommodate this uncertainty is therefore desirable to port operators. This paper suggests ways to generate robust berth allocation plans in container terminals. The problem is first formulated as a mixed-integer programming model whose main objective is to minimize the total tardiness of vessel departure time. It is then solved exactly and approximately. Experimental results show that only small instances of the proposed model can be solved exactly. To handle large instances in reasonable times, the Genetic Algorithm (GA) is used. However, it does not guarantee optimality and often the approximate solutions returned are of low quality. A hybrid meta-heuristic which combines Branch-and-Cut (B&C) as implemented in CPLEX, with the GA as we implement it here, is therefore suggested. This hybrid method retains the accuracy of Branch-and-Cut and the efficiency of GA. Numerical results obtained with the three approaches on a representative set of instances of the problem are reported.

Keywords

Container terminals Berth allocation problem Robustness Genetic algorithm Hybrid metaheuristic 

References

  1. 1.
    Blum, C.: Ant colony optimization: introduction and recent trends. Phys. Life Rev. 2(4), 353–373 (2005). ElsevierCrossRefGoogle Scholar
  2. 2.
    Cheong, C., Tan, K., Liu, D., Lin, C.: Multi-objective and prioritized berth allocation in container ports. Ann. Oper. Res. 180(1), 63–103 (2010). SpringerMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fister, I., Fister, J., Yang, X., Brest, J.: A comprehensive review of firefly algorithms. Swarm Evol. Comput. 13, 34–46 (2013). ElsevierCrossRefGoogle Scholar
  4. 4.
    Ganji, S., Babazadeh, A., Arabshahi, N.: Analysis of the continuous berth allocation problem in container ports using a genetic algorithm. Mar. Sci. Technol. 15(4), 408–416 (2010). SpringerCrossRefGoogle Scholar
  5. 5.
    Goh, K., Lim, A.: Combining various algorithms to solve the ship berthing problem. In: 12th IEEE International Conference on ICTAI, pp. 370–375. IEEE (2000)Google Scholar
  6. 6.
    Guan, Y., Cheung, R.: The berth allocation problem: models and solution methods. OR Spectrum 26(1), 75–92 (2004). SpringerMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Holland, J.: The Grid: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor (1975)zbMATHGoogle Scholar
  8. 8.
    Imai, A., Sun, X., Nishimura, E., Papadimitriou, S.: Berth allocation in a container port: using a continuous location space approach. Transp. Res. Part B Methodol. 39(3), 199–221 (2005). ElsevierCrossRefGoogle Scholar
  9. 9.
    Lee, D., Chen, J., Cao, J.: The continuous berth allocation problem: a greedy randomized adaptive search solution. Transp. Res. Part E Logist. Transport. Rev. 46(6), 1017–1029 (2010). ElsevierCrossRefGoogle Scholar
  10. 10.
    Lee, Y., Chen, C.: An optimization heuristic for the berth scheduling problem. Eur. J. Oper. Res. 196(2), 500–508 (2009). ElsevierCrossRefGoogle Scholar
  11. 11.
    Li, C., Cai, X., Lee, C.: Scheduling with multiple-job-on-one-processor pattern. IIE Trans. 30(5), 433–445 (1998). SpringerGoogle Scholar
  12. 12.
    Lim, A.: The berth planning problem. Oper. Res. Lett. 22(2), 105–110 (1998). ElsevierMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Moon, K.: A mathematical model and a heuristic algorithm for berth planning. Brain Korea. 21 (2000). CiteseerGoogle Scholar
  14. 14.
    Moorthy, R., Teo, C.: Berth management in container terminal: the template design problem. OR Spectrum 28(4), 495–518 (2006). SpringerCrossRefzbMATHGoogle Scholar
  15. 15.
    Kaveshgar, N., Huynh, N., Rahimian, S.: An efficient genetic algorithm for solving the quay crane scheduling problem. Expert Syst. Appl. 39(18), 13108–13117 (2012). ElsevierCrossRefGoogle Scholar
  16. 16.
    Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, New York (2011)Google Scholar
  17. 17.
    Kim, K., Moon, K.: Berth scheduling by simulated annealing. Transp. Res. Part B Methodol. 37(6), 541–560 (2003). ElsevierCrossRefGoogle Scholar
  18. 18.
    Vazquez-Rodríguez, J.A., Salhi, A.: Hybrid evolutionary methods for the solutionof complex scheduling problems. In: Advances in Artificial Intelligence, pp. 17–28 (2006)Google Scholar
  19. 19.
    Salhi, A., Fraga, E.S.: Nature-inspired optimisation approaches and the new plant propagation algorithm. In: Proceedings of the ICeMATH 2011, pp. K2-1-K2-8 (2011)Google Scholar
  20. 20.
    Vazquez-Rodríguez, J.A., Salhi, A.: A synergy exploiting evolutionary approach to complex scheduling problems. In: Computer Aided Methods in Optimal Design and Operations, Series on Computers and Operations Research, pp. 59–68. World Scientific (2006)Google Scholar
  21. 21.
    Salhi, A., Vazquez-Rodríguez, J.A.: Tailoring hyper-heuristics to specific instances of a scheduling problem using affinity and competence functions. Memetic Comput. 6(2), 77–84 (2014). SpringerCrossRefGoogle Scholar
  22. 22.
    Wang, F., Lim, A.: A stochastic beam search for the berth allocation problem. Dec. Supp. Syst. 42(4), 2186–2196 (2007). ElsevierCrossRefGoogle Scholar
  23. 23.
    Xu, Y., Chen, Q., Quan, X.: Robust berth scheduling with uncertain vessel delay and handling time. Ann. Oper. Res. 192(1), 123–140 (2012). SpringerMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zhen, L., Chang, D.: A bi-objective model for robust berth allocation scheduling. Comput. Ind. Eng. 63(1), 262–273 (2012). ElsevierCrossRefGoogle Scholar
  25. 25.
    Zhen, L., Lee, L., Chew, E.: A decision model for berth allocation under uncertainty. Eur. J. Oper. Res. 212(1), 54–68 (2011). ElsevierCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of EssexColchesterUK

Personalised recommendations