Advertisement

A Hybrid Multi-objective Evolutionary Approach for Optimal Path Planning of a Hexapod Robot

A Preliminary Study
  • Giuseppe CarboneEmail author
  • Alessandro Di Nuovo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9668)

Abstract

Hexapod robots are six-legged robotic systems, which have been widely investigated in the literature for various applications including exploration, rescue, and surveillance. Designing hexapod robots requires to carefully considering a number of different aspects. One of the aspects that require careful design attention is the planning of leg trajectories. In particular, given the high demand for fast motion and high-energy autonomy it is important to identify proper leg operation paths that can minimize energy consumption while maximizing the velocity of the movements. In this frame, this paper presents a preliminary study on the application of a hybrid multi-objective optimization approach for the computer-aided optimal design of a legged robot. To assess the methodology, a kinematic and dynamic model of a leg of a hexapod robot is proposed as referring to the main design parameters of a leg. Optimal criteria have been identified for minimizing the energy consumption and efficiency as well as maximizing the walking speed and the size of obstacles that a leg can overtake. We evaluate the performance of the hybrid multi-objective evolutionary approach to explore the design space and provide a designer with an optimal setting of the parameters. Our simulations demonstrate the effectiveness of the hybrid approach by obtaining improved Pareto sets of trade-off solutions as compared with a standard evolutionary algorithm. Computational costs show an acceptable increase for an off-line path planner.

Keywords

Multi-objective optimization Robot design Legged robots Hexapod robots 

References

  1. 1.
    Tedeschi, F., Carbone, G.: Design issues for hexapod walking robots. Robotics 3, 181–206 (2014)CrossRefGoogle Scholar
  2. 2.
    International Federation of Robotics. http://www.ifr.org/
  3. 3.
    Chavez-Clemente, D.: Gait optimization for multi-legged walking robots, with application to a lunar hexapod (2011). http://purl.stanford.edu/px063cb7934Includes
  4. 4.
    Carbone, G., Ceccarelli, M.: A mechanical design of a low-cost easy-operation anthropomorphic wheeled leg for walking machines. Int. J. Robot. Manag. 9, 3–8 (2004)Google Scholar
  5. 5.
    De Santos, P.G., Garcia, E., Estremera, J.: Quadrupedal locomotion: an introduction to the control of four-legged robots. Springer, London (2006)zbMATHGoogle Scholar
  6. 6.
    Krotkov, E.P., Simmons, R.G., Whittaker, W.L.: Ambler: performance of a six-legged planetary rover. Acta Astronaut. 35, 75–81 (1995)CrossRefGoogle Scholar
  7. 7.
    Nonami, K., Barai, R.K., Irawan, A., Daud, M.R.: Hydraulically Actuated Hexapod Robots: Design, Implementation and Control. Intelligent Systems, Control and Automation: Science and Engineering, vol. 66. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Silva, M.F., Machado, J.A.T., Barbosa, R.S.: Complex-order dynamics in hexapod locomotion. Sig. Process. 86, 2785–2793 (2006)CrossRefzbMATHGoogle Scholar
  9. 9.
    Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A: Evolutionary Algorithms for Solving Multi-objective Problems, 2nd edn. Springer, Heidelberg (2007)Google Scholar
  10. 10.
    Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)zbMATHGoogle Scholar
  11. 11.
    Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26, 369–395 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ascia, G., Catania, V., Di Nuovo, A.G., Palesi, M., Patti, D.: Performance evaluation of efficient multi-objective evolutionary algorithms for design space exploration of embedded computer systems. Appl. Soft Comput. 11, 382–398 (2011)CrossRefGoogle Scholar
  13. 13.
    Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello, C.A.C.: A survey of multiobjective evolutionary algorithms for data mining: part i. IEEE Trans. Evol. Comput. 18, 4–19 (2014)CrossRefGoogle Scholar
  14. 14.
    Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello, C.A.C.: Survey of multiobjective evolutionary algorithms for data mining: part II. IEEE Trans. Evol. Comput. 18(1), 20–35 (2014)CrossRefGoogle Scholar
  15. 15.
    Di Nuovo, A., Palesi, M., Catania, V.: Multi-objective evolutionary fuzzy clustering for high-dimensional problems. In: IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2007, pp. 1–6. IEEE (2007)Google Scholar
  16. 16.
    Di Nuovo, A., Catania, V.: An evolutionary fuzzy c-means approach for clustering of bio-informatics databases. In: IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2008. (IEEE World Congress on Computational Intelligence), pp. 2077–2082. IEEE (2008)Google Scholar
  17. 17.
    Ponsich, A., Jaimes, A.L., Coello, C.A.C.: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications. IEEE Trans. Evol. Comput. 17, 321–344 (2013)CrossRefGoogle Scholar
  18. 18.
    Deb, K., Tiwari, S.: Multi-objective optimization of a leg mechanism using genetic algorithms. Eng. Optim. 37, 325–350 (2005)CrossRefGoogle Scholar
  19. 19.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)CrossRefGoogle Scholar
  20. 20.
    Fleming, P.J., Pashkevich, A.P.: Application of multi-objective optimisation to compensator design for SISO control systems. Electron. Lett. 22(1), 258–259 (1986)CrossRefGoogle Scholar
  21. 21.
    Schittkowski, K.: NLPQL: A fortran subroutine solving constrained nonlinear programming problems. Ann. Oper. Res. 5, 485–500 (1986)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)CrossRefGoogle Scholar
  23. 23.
    Tedeschi, F., Carbone, G.: Design of hexapod walking robots: background and challenges. In: Habib, M.K. (ed.) Handbook of Research on Advancements in Robotics and Mechatronics, pp. 527–566. IGI Global (2015)Google Scholar
  24. 24.
    Di Nuovo, A.G., Ascia, G., Catania, V.: A study on evolutionary multi-objective optimization with fuzzy approximation for computational expensive problems. In: Coello, C.A., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 102–111. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Carbone, G., Shrot, A., Ceccarelli, M.: Operation strategy for a low-cost easy operation Cassino Hexapod. Appl. Bionics Biomech. 4, 149–156 (2007)CrossRefGoogle Scholar
  26. 26.
    Carbone, G., Tedeschi, F.: A low cost control architecture for Cassino Hexapod II. Int. J. Mech. Control. 14, 19–24 (2013)Google Scholar
  27. 27.
    Carbone, G., Ceccarelli, M., Oliveira, P., Saramago, S.: Carvalho, J, F.: An optimum path planning for Cassino parallel manipulator by using inverse dynamics. Robotica 6, 229–239 (2008)Google Scholar
  28. 28.
    Carbone, G., Tedeschi, F., Gallozzi, A., Cigol, M.: A robotic mobile platform for service tasks in cultural heritage. Int. J. Adv. Robot. Syst. 12, 1–10 (2015)Google Scholar
  29. 29.
    Frankovský, P., Hroncová, D., Delyová, I., Hudák, P.: Inverse and forward dynamic analysis of two link manipulator. In: Procedia Engineering, pp. 158–163 (2012)Google Scholar
  30. 30.
    Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Engineering and MathematicsSheffield Hallam UniversitySheffieldUK
  2. 2.Department of ComputingSheffield Hallam UniversitySheffieldUK
  3. 3.Department of Civil and Mechanical EngineeringUniversity of Cassino and South LatiumCassinoItaly
  4. 4.Faculty of Engineering and ArchitectureUniversity of Enna “Kore”EnnaItaly

Personalised recommendations