Skip to main content

Predictive Strength of Bayesian Networks for Diagnosis of Depressive Disorders

Part of the Smart Innovation, Systems and Technologies book series (SIST,volume 56)

Abstract

Increasing cases of misdiagnosis of mental disorders in Nigeria despite the use of the international standards provided in the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) and International Classification of Diseases (ICD-10) calls for an approach that takes cognizance of the socio-economic difficulties on the ground. While a growing recognition of the potential of artificial intelligence (AI) techniques in modeling clinical procedures has led to the design of various systems to assist clinicians in decision-making tasks in physical diseases, little attention has been paid to exploring the same techniques in the mental health domain. This paper reports the preliminary findings of a study to investigate the predictive strength of Bayesian networks for depressive disorders diagnosis. An automatic Bayesian model was constructed and tested with a real-hospital dataset of 580 depression patients of different categories and 23 attributes. The model predicted depression and its severity with high efficiency.

Keywords

  • Artificial intelligence
  • Bayesian networks
  • Mental health
  • Depression disorders
  • Psychiatric diagnosis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-39630-9_31
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-39630-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1

References

  1. Bayes, T.: An essay towards solving a problem in the doctrine of chances. By the Late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S. Philos. Trans. R. Soc. London 53(0), 370–418 (1763)

    Google Scholar 

  2. Heckerman, D.: Bayesian networks for data mining. Data Min. Knowl. Discov. 119(1), 79–119 (1997)

    CrossRef  Google Scholar 

  3. Nikovski, D.: Constructing Bayesian networks for medical diagnosis from incomplete and partially correct statistics. IEEE Trans. Knowl. Data Eng. 12(4), 1–18 (2000)

    CrossRef  Google Scholar 

  4. Tylman, W., Waszyrowski, T., Napieralski, A., Kamiński, M., Trafidło, T., Kulesza, Z., Kotas, R., Marciniak, P., Tomala, R., Wenerski, M.: Real-time prediction of acute cardiovascular events using hardware-implemented Bayesian networks. Comput. Biol. Med. (2015)

    Google Scholar 

  5. Su, C., Andrew, A., Karagas, M.R., Borsuk, M.E.: Using Bayesian networks to discover relations between genes, environment, and disease. BioData Min. 6(1), 6 (2013)

    Google Scholar 

  6. Gangwar, M., Mishra, R.B., Yadav, R.S.: Classical and intelligent computing methods in psychiatry and neuropsychitry : an overview. Int. J. Adv. Res. IT Eng. 3(12) (2014)

    Google Scholar 

  7. Ganasen, K.A., Parker, S., Hugo, C.J., Stein, D.J., Emsley, R.A., Seedat, S.: Mental health literacy: focus on developing countries. Afr. J. Psychiatry 11(1), 23–28 (2008)

    CrossRef  Google Scholar 

  8. Chattopadhyay, S.: A neuro-fuzzy approach for the diagnosis of depression. Elsevier Appl. Comput. Inform. in Press, 19 (2014)

    Google Scholar 

  9. Doherty, G., Coyle, D., Matthews, M.: Design and evaluation guidelines for mental health technologies. Interact. Comput. 22(4), 243–252 (2010)

    CrossRef  Google Scholar 

  10. James, B., Jenkins, R., Lawani, A., Omoaregba, J.: Depression in primary care: the knowledge, attitudes and practice of general practitioners in Benin City, Nigeria. S Afr Fam Pr. 54(1), 55–60 (2012)

    Google Scholar 

  11. Ferrari, A.J., Charlson, F.J., Norman, R.E., Patten, S.B., Freedman, G., Murray, C.J.L., Vos, T., Whiteford, H.: Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med. 10(11) (2013)

    Google Scholar 

  12. Salihu, A.S.: Impact of somatic symptoms on identification of depression among general outpatients by family physicians. Open J. Psychiatry 5, 278–284 (2015)

    Google Scholar 

  13. Ahmed, K., Bhugra, D.: Depression across ethnic minority cultures: diagnostic issues. World Cult. Psychiatry Res. Rev. 2(3), 51 (2007)

    Google Scholar 

  14. Huang, S.H., LePendu, P., Iyer, S.V., Tai-Seale, M., Carrell, D., Shah, N.H.: Toward personalizing treatment for depression: predicting diagnosis and severity. J. Am. Med. Inform. Assoc. 1–7 (2014)

    Google Scholar 

  15. WHO: Depression: a global public health concern. WHO Dep. Ment. Heal. Subst. Abus. 1–8 (2012). http://www.who.int/mental_health/management/depression/who_paper_depression_wfmh_2012.pdf

  16. Baasher, T.A., Carstairs, G.M., Giel, R., Hassler, F.R.: Mental health services in developing countries. WHO Seminar on the Organisation of Mental Health Services. World Health Organisation, Geneva (1975)

    Google Scholar 

  17. Sumathi, M.R., Poorna, B.: A bayesian framework for diagnosing depression level of adolescents. Int. Conf. Comput. Intell. Syst. 4(March), 1350–1354 (2015)

    Google Scholar 

  18. Curiac, D.-I., Vasile, G., Banias, O., Volosencu, C., Albu, A.: Bayesian network model for diagnosis of psychiatric diseases. In: Proceedings of ITI 2009 31st International Conference on Information Technology Interfaces, pp. 61–66 (2009_

    Google Scholar 

  19. Chang, Y.-S., Fan, C.-T., Lo, W.-T., Hung, W.-C., Yuan, S.-M.: Mobile cloud-based depression diagnosis using an ontology and a Bayesian network. Futur. Gener. Comput. Syst. 43–44, 87–98 (2015)

    CrossRef  Google Scholar 

  20. Bouckaert, R.R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., Scuse, D.: WEKA Manual for Version 3-7-12. University of Waikato, Hamilton, New Zealand (2014)

    Google Scholar 

  21. Tversky, A., Kahneman, D.: Judgment under Uncertainty: Heuristics and Biases. American Association for the Advancement of Science, New Series, pp. 1124–1131 (1974)

    Google Scholar 

  22. Witten, I., Frank, E., Hall, M.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann Publishers, Third Edit (2011)

    Google Scholar 

  23. Shojaei Estabragh, Z., Riahi Kashani, M.M., Jeddi Moghaddam, F., Sari, S., Taherifar, Z., Moradi Moosavy, S., Sadeghi Oskooyee, K.: Bayesian network modeling for diagnosis of social anxiety using some cognitive-behavioral factors. Netw. Model. Anal. Heal. Inform. Bioinforma. 2(4), 257–265 (2013)

    Google Scholar 

  24. Oteniya, L.: Bayesian Belief Networks for Dementia Diagnosis and Other Applications: A Comparison of Hand-Crafting and Construction using A Novel Data Driven Technique. A PhD Thesis, Department of Computing Science and Mathematics, University of Stirling, 2008

    Google Scholar 

  25. Saito, T., Rehmsmeier, M.: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 10(3), e0118432 (2015)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blessing Ojeme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ojeme, B., Mbogho, A. (2016). Predictive Strength of Bayesian Networks for Diagnosis of Depressive Disorders. In: Czarnowski, I., Caballero, A., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies 2016. IDT 2016. Smart Innovation, Systems and Technologies, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-39630-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39630-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39629-3

  • Online ISBN: 978-3-319-39630-9

  • eBook Packages: EngineeringEngineering (R0)