ADCs for Low-Voltage Low-Power Applications

  • Taimur Rabuske
  • Jorge Fernandes
Part of the Analog Circuits and Signal Processing book series (ACSP)


This chapter introduces the engineering problem and shows the motivation for the design of analog-to-digital converter (ADC)s to be used in low-voltage low-power applications. Fundamental aspects of data conversion such as sampling and quantization are also reviewed, and the three most commonly used search methods for Nyquist-rate ADCs are revisited. A summary of this review supports the choice of the successive approximation register (SAR) topology for highly voltage- and power-constrained applications.


Sensor Node Wireless Sensor Network Supply Voltage Binary Search Quantization Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W.-H. Chen, W.-F. Loke, B. Jung, A 0.5-V, 440μW frequency synthesizer for implantable medical devices. IEEE J. Solid State Circuits 47 (8), 1896–1907 (2012). doi: 10.1109/JSSC.2012.2196315
  2. 2.
    K. Wise, A. Sodagar, Y. Yao, M. Gulari, G. Perlin, K. Najafi, Microelectrodes, microelectronics, and implantable neural microsystems. Proc. IEEE 96 (7), 1184–1202 (2008). doi: 10.1109/JPROC.2008.922564 CrossRefGoogle Scholar
  3. 3.
    A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, J. Anderson, Wireless sensor networks for habitat monitoring, in ACM International Workshop on Wireless Sensor Networks and Applications (ACM, New york, 2002), pp. 88–97. doi: 10.1145/570738.570751 Google Scholar
  4. 4.
    E.S. Biagioni, K. Bridges, The application of remote sensor technology to assist the recovery of rare and endangered species. Int. J. High Perform. Comput. Appl. 16 (3), 315–324 (2002). doi: 10.1177/10943420020160031001 CrossRefGoogle Scholar
  5. 5.
    L. Schwiebert, S.K. Gupta, J. Weinmann, Research challenges in wireless networks of biomedical sensors, in International Conference on Mobile Computing and Networking (ACM, New York, 2001), pp. 151–165. doi: 10.1145/381677.381692 Google Scholar
  6. 6.
    S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, M. Turon, Health monitoring of civil infrastructures using wireless sensor networks, in International Symposium on Information Processing in Sensor Networks (IPSN) (IEEE, New York, 2007), pp. 254–263. doi: 10.1109/IPSN.2007.4379685 Google Scholar
  7. 7.
    J. Yick, B. Mukherjee, D. Ghosal, Wireless sensor network survey. Comput. Netw. 52 (12), 2292–2330 (2008). doi: 10.1016/j.comnet.2008.04.002 CrossRefGoogle Scholar
  8. 8.
    P. Juang, H. Oki, Y. Wang, M. Martonosi, L.S. Peh, D. Rubenstein, Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with ZebraNet, in International Conference on Architectural Support for Programming Languages and Operating Systems (ACM, New York, 2002), pp. 96–107. doi: 10.1145/605397.605408 Google Scholar
  9. 9.
    C.Ó. Mathúna, T. O’Donnell, R.V. Martinez-Catala, J. Rohan, B. O’Flynn, Energy scavenging for long-term deployable wireless sensor networks. Talanta 75 (3), 613–623 (2008). Special Section: Remote Sensing. doi: 10.1016/j.talanta.2007.12.021
  10. 10.
    Y. Tan, Energy Harvesting Autonomous Sensor Systems: Design, Analysis, and Practical Implementation (Taylor & Francis, Boca Raton, 2013). isbn:9781439892732Google Scholar
  11. 11.
    Micropower step up low-voltage booster module enables practical energy capture from low power generators. Advanced Linear Devices, Inc. (Online). Available: (visited on 10/2014)
  12. 12.
    A. Wang, B. Calhoun, A. Chandrakasan, Sub-Threshold Design for Ultra Low-Power Systems. Integrated Circuits and Systems. (Springer, New York, 2006). isbn:9780387345017. doi: 10.1007/978-0-387-34501-7
  13. 13.
    J. Rabaey, Low Power Design Essentials. Integrated Circuits and Systems (Springer, New York, 2009). isbn: 9780387717135.doi: 10.1007/978-0-387-71713-5
  14. 14.
    International technology roadmap for semiconductors, 2013. (Online). Available: (visited on 10/2014).
  15. 15.
    M. Konijnenburg, Y. Cho, M. Ashouei, T. Gemmeke, C. Kim, J. Hulzink, J. Stuyt, M. Jung, J. Huisken, S. Ryu, J. Kim, H. de Groot, Reliable and energy-efficient 1MHz 0.4V dynamically reconfigurable SoC for ExG applications in 40 nm LP CMOS in IEEE International Solid-State Circuits Conference, Feb 2013, pp. 430–431. doi: 10.1109/ISSCC.2013.6487801
  16. 16.
    J. Kulkarni, K. Kim, K. Roy, A 160 mV robust Schmitt trigger based subthreshold SRAM. IEEE J. Solid State Circuits 42 (10), 2303–2313 (2007). doi: 10.1109/JSSC.2007.897148
  17. 17.
    L. Ferreira, S. Sonkusale, A 60-dB gain OTA operating at 0.25-V power supply in 130-nm digital CMOS process. IEEE Trans. Circuits Syst. I Regul. Pap. 61 (6), 1609–1617 (2014). doi: 10.1109/TCSI.2013.2289413
  18. 18.
    S. Chatterjee, K. Pun, N. Stanic, Y. Tsividis, P. Kinget, Analog Circuit Design Techniques at 0.5V. Analog Circuits and Signal Processing. (Springer, New York, 2010). isbn:9780387699547. doi: 10.1007/978-0-387-69954-7
  19. 19.
    F. Zhang, K. Wang, J. Koo, Y. Miyahara, B. Otis, A 1.6 mW 300 mV- supply 2.4 GHz receiver with − 94 dBm sensitivity for energy-harvesting applications, in IEEE International Solid-State Circuits Conference (ISSCC), vol. 56 (IEEE, New York, 2013), pp. 456–457. doi: 10.1109/ISSCC.2013.6487813
  20. 20.
    J. Cheng, N. Qi, P.Y. Chiang, A. Natarajan, A low-power, low-voltage WBAN-compatible sub-sampling PSK receiver in 65 nm CMOS. IEEE J. Solid-State Circuits 49 (12), 3018–3030 (2014). doi: 10.1109/JSSC.2014.2362840
  21. 21.
    U. Wismar, D. Wisland, P. Andreani, A 0.2 V 0.44 μW 20 kHz analog to digital Σ Δ modulator with 57 fJ/conversion FoM, in IEEE European Solid- State Circuits Conference (2006), pp. 187–190. doi: 10.1109/ESSCIR.2006.307562
  22. 22.
    H.-Y. Tai, H.-W. Chen, H.-S. Chen, A 3.2fJ/c.-s. 0.35V 10b 100kS/s SAR ADC in 90 nm CMOS, in IEEE Symposium on VLSI Circuits (2012), pp. 92–93. isbn:978-1-4673-0849-6. doi: 10.1109/VLSIC.2012.6243805
  23. 23.
    A. Shikata, R. Sekimoto, T. Kuroda, H. Ishikuro, A 0.5 V 1.1 MS/sec 6.3 fJ/conversion-step SAR-ADC with tri-level comparator in 40 nm CMOS. IEEE J. Solid State Circuits 47 (4), 1022–1030 (2012). issn:0018-9200. doi: 10.1109/JSSC.2012.2185352
  24. 24.
    D. Senderowicz, G. Nicollini, S. Pernici, A. Nagari, P. Confalonieri, C. Dallavalle, Low-voltage double-sampled Σ Δ converters. IEEE J. Solid State Circuits 32 (12), 1907–1919 (1997). doi: 10.1109/4.643649 CrossRefGoogle Scholar
  25. 25.
    M. Yip, A.P. Chandrakasan, A resolution-reconfigurable 5-to-10b 0.4- to-1 V power scalable SAR ADC, in IEEE International Solid-State Circuits Conference (ISSCC) (2011), pp. 190–192, isbn:978-1-61284-303-2. doi: 10.1109/ISSCC.2011.5746277
  26. 26.
    W.M. Goodall, Telephony by pulse code modulation. Bell Syst. Tech. J. 26 (3), 395–409 (1947). doi: 10.1002/j.1538-7305.1947.tb00902.x CrossRefGoogle Scholar
  27. 27.
    B. Gordon, R. Talambiras, Signal conversion apparatus, US patent 3,108,266, 1963Google Scholar
  28. 28.
    W. Kester (ed.), Data Conversion Handbook (Newnes, 2005). isbn:978-0-7506-7841-4.Google Scholar
  29. 29.
    J.-H. Tsai, Y.-J. Chen, M.-H. Shen, P.-C. Huang, 1-V, 8b, 40MS/s, 113μW charge-recycling SAR ADC with a 14μW asynchronous controller, in IEEE Symposium on VLSI Circuits (2011), pp. 264–265Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Taimur Rabuske
    • 1
  • Jorge Fernandes
    • 1
  1. 1.INESC-ID Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal

Personalised recommendations