Advertisement

Introduction

  • Taimur Rabuske
  • Jorge Fernandes
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

This chapter presents the research background and contextualizes this book. Also, the goals of this work are discussed. Finally, the book outline and the original contributions are summarized.

Keywords

Energy Efficiency Graphic Processing Unit Switch Resistance Static Random Access Memory Dynamic Comparator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Clark, A Farewell to Alms: A Brief Economic History of the World. The Princeton Economic History of the Western World (Princeton University Press, Princeton, 2007). ISBN:9781400827817Google Scholar
  2. 2.
    S. Franssila, Introduction to Microfabrication, 2nd edn. (Wiley, New York, 2010). ISBN: 9781119991892. doi: 10.1002/9781119990413
  3. 3.
  4. 4.
    B. Murmann, ADC performance survey 1997–2015. (Online). Available: http://web.stanford.edu/~murmann/adcsurvey.html (visited on 02/2016)
  5. 5.
    W. Liu, Low-power high-performance SAR ADC design with digital calibration techniques. Ph.D. thesis, University of Illinois at Urbana-Champaign, 2010Google Scholar
  6. 6.
    J. McCreary, P. Gray, All-MOS charge redistribution analog-to-digital conversion techniques. I. IEEE J. Solid State Circuits 10 (6), 371–379 (1975). doi: 10.1109/JSSC.1975.1050629 CrossRefGoogle Scholar
  7. 7.
    J. Craninckx, G. van der Plas, A 65fJ/conversion-step 0-to-50MS/s 0- to-0.7mW 9b charge-sharing SAR ADC in 90nm digital CMOS, in IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, New York, 2007), pp. 246–600. doi: 10.1109/ISSCC.2007.373386
  8. 8.
    V. Giannini, P. Nuzzo, V. Chironi, A. Baschirotto, G. Van der Plas, J. Craninckx, An 820μw 9b 40MS/s noise-tolerant dynamic-SAR ADC in 90 nm digital CMOS, in IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, New York, 2008), pp. 238–610. doi: 10.1109/ISSCC.2008.4523145
  9. 9.
    J.-H. Tsai, Y.-J. Chen, M.-H. Shen, P.-C. Huang, 1-V, 8b, 40MS/s, 113μW charge-recycling SAR ADC with a 14μW asynchronous controller, in IEEE Symposium on VLSI Circuits (2011), pp. 264–265Google Scholar
  10. 10.
    B. Malki, T. Yamamoto, B. Verbruggen, P. Wambacq, J. Craninckx, A 70dB DR 10b 0-to-80MS/s current-integrating SAR ADC with adaptive dynamic range, in IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, New York, 2012), pp. 470–472. doi: 10.1109/ISSCC.2012.6177095 Google Scholar
  11. 11.
    Y.-J. Chen, J.-H. Tsai, M.-H. Shen, P.-C. Huang, A 1-V 8-bit 100kS/s- to-4MS/s asynchronous SAR ADC with 46fJ/conv.-step, in International Symposium on VLSI Design, Automation and Test (IEEE, New York, 2011), pp. 1–4. doi: 10.1109/VDAT.2011.5783590
  12. 12.
    B. Malki, T. Yamamoto, B. Verbruggen, P. Wambacq, J. Craninckx, A 70 dB DR 10b 0-to-80 MS/s current-integrating SAR ADC with adaptive dynamic range. IEEE J. Solid State Circuits 49 (5), 1173–1183 (2014). doi: 10.1109/JSSC.2014.2309086 CrossRefGoogle Scholar
  13. 13.
    V. Hariprasath, J. Guerber, S.-H. Lee, U.-K. Moon, Merged capacitor switching based SAR ADC with highest switching energy-efficiency. Electron. Lett. 46 (9), 620 (2010). doi: 10.1049/el.2010.0706
  14. 14.
    Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, R.P. Martins, F. Maloberti, A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS. IEEE J. Solid State Circuits 45 (6), 1111–1121 (2010). doi: 10.1109/JSSC.2010.2048498
  15. 15.
    C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE J. Solid State Circuits 45 (4), 731–740 (2010). doi: 10.1109/JSSC.2010.2042254 CrossRefGoogle Scholar
  16. 16.
    C. Yuan, Y. Lam, Low-energy and area-efficient tri-level switching scheme for SAR ADC. Electron. Lett. 48 (9), 482 (2012). doi: 10.1049/el.2011.4001
  17. 17.
    L. Sun, K.-P. Pun, W.-T. Ng, Capacitive digital-to-analogue converters with least significant bit down in differential successive approximation register ADCs. J. Eng. 1–4 (2014). doi: 10.1049/joe.2013.0219
  18. 18.
    X. Song, Y. Xiao, Z. Zhu, Vcm-based monotonic capacitor switching scheme for SAR ADC. Electron. Lett. 49 (5), 327–329 (2013). doi: 10.1049/el.2012.3332 CrossRefGoogle Scholar
  19. 19.
    E. Rahimi, M. Yavari, Energy-efficient high-accuracy switching method for SAR ADCs. Electron. Lett. 50 (7), 499–501 (2014). doi: 10.1049/el.2013.3451 CrossRefGoogle Scholar
  20. 20.
    M. Saberi, R. Lotfi, K. Mafinezhad, W.A. Serdijn, Analysis of power consumption and linearity in capacitive digital-to-analog converters used in successive approximation ADCs. IEEE Trans. Circuits Syst. I Regul. Pap. 58 (8), 1736–1748 (2011). doi: 10.1109/TCSI.2011.2107214 MathSciNetCrossRefGoogle Scholar
  21. 21.
    W.P. Zhang, X. Tong, Noise modeling and analysis of SAR ADCs. IEEE Trans. Very Large Scale Integr. Syst. 23 (12), 2922–2930 (2015). doi: 10.1109/TVLSI.2014.2379613 CrossRefGoogle Scholar
  22. 22.
    J.A. Fredenburg, M.P. Flynn, Statistical analysis of ENOB and yield in binary weighted ADCs and DACS with random element mismatch. IEEE Trans. Circuits Syst. I Regul. Pap. 59 (7), 1396–1408 (2012). doi: 10.1109/TCSI.2011.2177006 MathSciNetCrossRefGoogle Scholar
  23. 23.
    T. Rabuske, J. Fernandes, Noise-aware simulation-based sizing and optimization of clocked comparators. Analog Integr. Circ. Sig. Process 81 (3), 723–728 (2014). doi: 10.1007/s10470-014-0428-4 CrossRefGoogle Scholar
  24. 24.
    T. Rabuske, F. Rabuske, J. Fernandes, C. Rodrigues, An 8-bit 0.35- V 5.04-fJ/ conversion-step SAR ADC with background self-calibration of comparator offset. IEEE Trans. Very Large Scale Integr. Syst. (VLSI) 23 (7), 1301–1307 (2015). doi: 10.1109/TVLSI.2014.2337236
  25. 25.
    T. Rabuske, J. Fernandes, A 9-b 0.4-V charge-mode SAR ADC with 1.6-V input swing and a MOSCAP-only DAC, in Proceedings of European Solid-State Circuits Conference (IEEE, New York, 2015), pp. 311–314. ISBN:978-1-4673-7470-5. doi: 10.1109/ESSCIRC.2015.7313889
  26. 26.
    T. Rabuske, J. Fernandes, A SAR ADC With a MOSCAP-DAC, IEEE J. Solid-State Circuits, 51 (6), 1410–1422 (2016). doi: 10.1109/JSSC.2016.2548486 CrossRefGoogle Scholar
  27. 27.
    T. Rabuske, J. Fernandes, F. Rabuske, C. Rodrigues, M.B. dos Santos, A self-calibrated 10-bit 1 MSps SAR ADC with reduced-voltage charge- sharing DAC, in IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, New York, 2013), pp. 2452–2455. doi: 10.1109/ISCAS.2013.6572375 Google Scholar
  28. 28.
    T. Rabuske, J. Fernandes, A 12-bit SAR ADC with background self-calibration based on a MOSCAP-DAC with dynamic body-biasing, in IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, New York, 2016), pp. 1482–1485Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Taimur Rabuske
    • 1
  • Jorge Fernandes
    • 1
  1. 1.INESC-ID Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal

Personalised recommendations