Skip to main content

Gill Ion Transport ATPases and Ammonia Excretion in Aquatic Crustaceans

  • Chapter
  • First Online:
Book cover Acid-Base Balance and Nitrogen Excretion in Invertebrates

Abstract

Crustaceans inhabit diverse biotopes, often subject to alterations that constitute a severe challenge to their homeostatic mechanisms. These challenges have driven the evolution of biochemical and physiological processes that have enabled their survival in such niches. Ion-transporting enzymes like the (Na+, K+)-ATPase and V(H+)-ATPase present in the gill epithelia underpin the ion regulatory abilities of these highly diversified organisms. The present chapter examines the structure and function of these two gill ATPases that also participate actively in ammonia excretion. We summarize current knowledge on their role in osmotic and ionic regulation and associated with ontogenetic changes. We analyze the effects of polyamines on (Na+, K+)-ATPase activity and phosphoenzyme formation, aiming to provide insights into the biochemical bases of physiological homeostasis in crustaceans. We examine future perspectives that should provide a better understanding of the role of gill ATPases in active ammonia excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akamatsu N, Inenaga K, Yamashita H (1993) Inhibitory effects of natriuretic peptides on vasopressin neurons mediated through cGMP and cGMP-dependent protein kinase in vitro. J Neuroendocrinol 5:517–522

    Article  CAS  PubMed  Google Scholar 

  • Alberts RW (1967) Biochemical aspects of active transport. Annu Rev Biochem 6:727–756

    Google Scholar 

  • Al-Reasi HA, Yusuf U, Smith DS, Wood CM (2013) The effect of dissolved organic matter (DOM) on sodium transport and nitrogenous waste excretion of the freshwater cladoceran (Daphnia magna) at circumneutral and low pH. Comp Biochem Physiol 158C:207–215

    Google Scholar 

  • Anger K (2003) Salinity as a key parameter in the larval biology of decapods crustaceans. Invertebr Reprod Dev 43:29–45

    Google Scholar 

  • Anger K (2013) Neotropical macrobrachium (Caridea: Palaemonidae): on the biology, origin, and radiation of freshwater-invading shrimp. J Crustac Biol 33:151–183

    Google Scholar 

  • Anger K, Hayd L (2010) Feeding and growth in early larval shrimp Macrobrachium amazonicum from the Pantanal, southwestern Brazil. Aquat Biol 9:251–261

    Google Scholar 

  • Apell HJ, Benz G, Sauerbrunn D (2011) Proton diet for the sodium pump. Biochemistry 50:409–418

    Google Scholar 

  • Aperia A (2012) 2011 Homer Smith Award: to serve and protect: classic and novel roles for Na+, K+ -adenosine triphosphatase. J Am Soc Nephrol 23:1283–1290

    Google Scholar 

  • Arata Y, Nishi T, Kawasaki-Nishi S, Shao E, Wilkens S, Forgac M (2002) Structure, subunit function and regulation of the coated vesicle and yeast vacuolar (H+)-ATPases. Biochim Biophys Acta 1555:71–74

    Google Scholar 

  • Arystarkhova E, Wetzel RK, Asinovski NK, Sweadner KJ (1999) The gamma subunit modulates Na+ and K+ affinity of the renal Na, K- ATPase. J Biol Chem 274:33183–33185

    Google Scholar 

  • Askar A, Treptow H (1986) Biogene amine in Lebensmitteln. Vorkommen, Bedeutung und Bestimmung. Eugen Ulmer GmbH and Co, Stuttgart

    Google Scholar 

  • Augusto A, Greene LJ, Laure HJ, McNamara JC (2007) The ontogeny of isosmotic intracellular regulation in the diadromous, freshwater palaemonid shrimps, Macrobrachium amazonicum and M. olfersi (Crustacea, Decapoda). J Crustac Biol 27:626–634

    Google Scholar 

  • Azarias G, Kruusmagi M, Connor S, Akkuratov EE, Liu XL, Lyons D, Brismar H, Broberger C, Aperia A (2013) A specific and essential role for Na, K-ATPase α3 in neurons co-expressing α1 and α3. J Biol Chem 288:2734–2743

    Google Scholar 

  • Aziz SM, Olson JW, Gillespie MN (1994) Multiple polyamine transport pathways in cultured pulmonary artery smooth muscle cells: regulation by hypoxia. Am J Respir Cell Mol Biol 10:160–166

    Google Scholar 

  • Baldwin GF, Kirschner LB (1976) Sodium and chloride regulation in Uca adapted to 175 percent sea water. J Exp Zool 49:158–171

    Google Scholar 

  • Barnes DB (2000) Zoologia dos invertebrados, 4th edn. Editora Roca, São Paulo

    Google Scholar 

  • Baxter-Lowe LA, Guo JZ, Bergstrom EE, Hokin LE (1989) Molecular cloning of the Na, K-ATPase α-subunit in developing brine shrimp and sequence comparison with higher organisms. FEBS Lett 257:181–187

    Google Scholar 

  • Belli NM, Faleiros RO, Firmino KC, Masui DC, Leone FA, McNamara JC, Furriel RP (2009) Na, K-ATPase activity and epithelial interfaces in gills of the freshwater shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae). Comp Biochem Physiol 152A:431–439

    Google Scholar 

  • Belogus T, Haviv H, Karlish SJD (2009) Neutralization of the charge on Asp(369) of Na+, K + -ATPase triggers E-1 < - > E-2 conformational changes. J Biol Chem 248:31038–31051

    Google Scholar 

  • Benlekbir S, Bueler SA, Rubinstein JL (2012) Structure of the vacuolar-type ATPase from Saccharomyces cerevisiae at 11-A resolution. Nat Struct Mol Biol 19:1356–1362

    Google Scholar 

  • Bhattacharyya KK, Bergstrom EE, Hokin LE (1990) Molecular cloning of the β-subunit of the Na, K-ATPase in the brine shrimp, Artemia: the cDNA-derived amino acid sequence shows low homology with the β-subunits of vertebrates except in the single transmembrane and the carboxy-terminal domains. FEBS Lett 269:233–238

    Google Scholar 

  • Bianchini A, Wood CM (2003) Mechanism of acute silver toxicity in Daphnia magna. Environ Toxicol Chem 22:1361–1367

    Google Scholar 

  • Bianchini A, Lauer MM, Nery LE, Colares EP, Monserrat JM, Dos Santos Filho EA (2008) Biochemical and physiological adaptations in the estuarine crab Neohelice granulata during salinity acclimation. Comp Biochem Physiol 151A:423–436

    Google Scholar 

  • Blanco G (2005) Na, K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation. Semin Nephrol 25:292–303

    Google Scholar 

  • Boron WF (1986) Intracellular pH regulation in epithelial cells. Annu Rev Physiol 48:377–388

    Google Scholar 

  • Bouaricha N, Charmantier-Daures M, Thuet P, Trilles J-P, Charmantier G (1994) Ontogeny of osmoregulatory structures in the shrimp Penaeus japonicus (Crustacea, Decapoda). Biol Bull 186:29–40

    Google Scholar 

  • Boudour-Boucheker N, Boulo V, Lorin-Nebel C, Elguero C, Grousset E (2013) Adaptation to freshwater in the palaemonid shrimp Macrobrachium amazonicum: comparative ontogeny of osmoregulatory organs. Cell Tissue Res 353:87–98

    Google Scholar 

  • Boudour-Boucheker N, Boulo V, Charmantier-Daures M, Grousset E, Anger K, Charmantier G, Lorin-Nebel C (2014) Differential distribution of V-type H + -ATPase and Na+/K + -ATPase in the branchial chamber of the palaemonid shrimp Macrobrachium amazonicum. Cell Tissue Res 357:195–206

    Google Scholar 

  • Bowman EJ, Graham LA, Stevens TH, Bowman BJ (2004) The bafilomycin/concanamycin binding site in subunit c of the V-ATPases from Neurospora crassa and Saccharomyces cerevisiae. J Biol Chem 279:33131–33138

    Google Scholar 

  • Boxenbaum N, Daly SE, Javaid ZZ, Lane LK, Blostein R (1998) Changes in the steady-state conformational equilibrium resulting from cytoplasmic mutations of the (Na+, K+)-ATPase α-subunit. J Biol Chem 273:23086–23092

    Google Scholar 

  • Brink B, Ten B, Damink C, Joosten HML, Huis In’t Veld JHJ (1990) Occurrence and formation of biologically active amines in foods. Int J Food Microbiol 11:73–84

    Google Scholar 

  • Bublitz M, Poulsen H, Morth JP, Nissen P (2010) In and out of the cation pumps: P-Type ATPase structure revisited. Curr Opin Struct Biol 20:431–439

    Google Scholar 

  • Burnett LE, Towle DW (1990) Sodium ion uptake by perfused gills of the blue crab Callinectes sapidus: effects of ouabain and amiloride. J Exp Biol 149:293–305

    Google Scholar 

  • Burnett LE, Dunn TN, Infantino JRL (1985) The function of carbonic anhydrase in crustacean gills. In: Gilles R, Gilles-Baillien M (eds) Transport processes, iono- and osmoregulation. Springer, Berlin, pp 159–168

    Google Scholar 

  • Cameron JN (1978) NaCl balance in blue crabs, Callinectes sapidus, in freshwater. J Comp Physiol 123B:127–135

    Google Scholar 

  • Capendeguy O, Horisberger JD (2005) The role of the third extracellular loop of the Na+, K+ -ATPase α-subunit in a luminal gating mechanism. J Physiol 565:207–218

    Google Scholar 

  • Carvalho FB, Mello CF, Marisco PC, Tonello R, Girardi BA, Ferreira J, Oliveira MS, Rubin MA (2012) Spermidine decreases Na+, K + -ATPase activity through NMDA receptor and protein kinase G activation in the hippocampus of rats. Eur J Pharmacol 684:79–86

    Google Scholar 

  • Casero RA Jr, Pegg AE (1993) Spermidine/spermineN1-acetyltransferase—the turning point in polyamine metabolism. FASEB J 7:653–661

    Google Scholar 

  • Charmantier G (1998) Ontogeny of osmoregulation in crustaceans: a review. Invertebr Reprod Dev 33:177–190

    Google Scholar 

  • Charmantier G, Anger K (1999) Ontogeny of osmoregulation in the palaemonid shrimp Palaemonetes argentinus (Crustacea: Decapoda). Mar Ecol Prog Ser 181:125–129

    Google Scholar 

  • Charmantier G, Anger K (2011) Ontogeny of osmoregulatory patterns in the South American shrimp Macrobrachium amazonicum: loss of hypo-regulation in a land-locked population indicates phylogenetic separation from estuarine ancestors. J Exp Mar Biol Ecol 396:89–98

    Google Scholar 

  • Charmantier G, Charmantier-Daures M (2001) Ontogeny of osmoregulation in crustaceans: the embryonic phase. Am Zool 41:1078–1089

    Google Scholar 

  • Chen JC, Lai SH (1993) Effects of temperature and salinity on oxygen consumption and ammonia-N excretion of juvenile Penaeus japonicus Bate. J Exp Mar Biol Ecol 165:161–170

    Google Scholar 

  • Choe H, Sackin H, Palmer LG (2000) Permeation properties of inward-rectifier potassium channels and their molecular determinants. J Gen Physiol 115:391–404

    Google Scholar 

  • Chourasia M, Sastry N (2012) The nucleotide, inhibitor, and cation binding sites of P-type II ATPases. Chem Biol Drug Des 79:617–627

    Google Scholar 

  • Cieluch U, Charmantier G, Grousset E, Charmantier-Daures M, Anger K (2005) Osmoregulation, immunolocalization of Na+/K + - ATPase, and ultrastructure of branchial epithelia in the developing brown shrimp, Crangon crangon (Decapoda, Caridea). Physiol Biochem Zool 78:1017–1025

    Google Scholar 

  • Cieluch U, Anger K, Charmantier-Daures M, Charmantier G (2007) Osmoregulation and immunolocalization of Na+/K + -ATPase during the ontogeny of the mitten crab Eriocheir sinensis (Decapoda, Grapsoidea). Mar Ecol Prog Ser 329:169–178

    Google Scholar 

  • Cipriano DJ, Wang Y, Bond S, Hinton A, Jefferies KC, Qi J, Forgac M (2008) Structure and regulation of the vacuolar ATPases. Biochim Biophys Acta 1777:599–604

    Google Scholar 

  • Cirri E, Katz A, Mishra NK, Belogus T, Lifshitz Y, Garty H, Karlish SJD, Apell HJ (2011) Phospholemman (FXYD1) raises the affinity of the human r1β1 isoform of Na, K-ATPase for Na ions. Biochemistry 50:3736–3748

    Google Scholar 

  • Clarke RJ (2009) Mechanism of allosteric effects of ATP on the kinetics of P-type ATPases. Eur Biophys J 39:3–17

    Google Scholar 

  • Clarke RJ, Catauro M, Rasmussen HH, Apell HP (2013) Quantitative calculation of the role of the Na+, K+ -ATPase in thermogenesis. Biochim Biophys Acta 1827:1205–1212

    Google Scholar 

  • Coffino P (2001) Antizyme, a mediator of ubiquitin-independent proteasomal degradation. Biochimie 83:319–323

    Google Scholar 

  • Cohen E, Goldshleger R, Shainskaya A, Tal DM, Ebel C, Maire M, Karlish SJD (2005) Purification of Na+, K+ -ATPase expressed in Pichia pastoris reveals an essential role of phospholipid-protein interactions. J Biol Chem 280:16610–16618

    Google Scholar 

  • Colina C, Palavicini JP, Srikumar D, Holmgren M, Rosenthal JJC (2010) Regulation of Na+/K+ ATPase transport velocity by RNA. PLoS Biol 8:1–9

    Google Scholar 

  • Compère P, Wanson S, Pequeux A, Gilles R, Goffinet G (1989) Ultrastructural changes in the gill epithelium of the green crab Carcinus maenas in relation to the external salinity. Tissue Cell 21:299–318

    Google Scholar 

  • Conte FP, Droukas PC, Ewing RD (1977) Development of sodium regulation and de novo synthesis of Na+-K+-activated ATPase in larval brine shrimp Artemia salina. J Exp Zool 202:339–362

    Google Scholar 

  • Copeland DE, Fitzjarrell AT (1968) The salt absorbing cells in the gills of the blue crab (Callinectes sapidus, Rathbun) with notes on modified mitochondria. Z Zellforsch 92:1–22

    Google Scholar 

  • Cornelius F, Mahmmoud YA (2009) Interaction between cardiotonic steroids and Na, K-ATPase: effects of pH and ouabain induced changes in enzyme conformation. Biochemistry 48:10056–10065

    Google Scholar 

  • Cornelius F, Yasser A, Mahmmoud YA, Toyoshima C (2011) Metal fluoride complexes of Na, K-ATPase: characterization of fluoride-stabilized phosphoenzyme analogues and their interaction with cardiotonic steroids. J Biol Chem 286:29882–29892

    Google Scholar 

  • Cornelius F, Kanai R, Toyoshima C (2013) Moiety and steroid hydroxyls of cardiotonic steroids in binding to Na, K-ATPase. J Biol Chem 288:6602–6616

    Google Scholar 

  • Corotto FS, Holliday CW (1996) Branchial Na, K-ATPase e osmoregulation in the purple shore crab Hemigrapsus nudus (Dana). Comp Biochem Physiol 113A:361–368

    Google Scholar 

  • Crambert G, Li CM, Swee LK, Geering K (2004) FXYD7, mapping of functional sites involved in endoplasmic reticulum export, association with e regulation of (Na+, K+)-ATPase. J Biol Chem 279:30888–30895

    Google Scholar 

  • D’Orazio SE, Holliday CW (1985) Gill Na, K-ATPase osmoregulation in these fiddler crabs, Uca pugilator. Physiol Zool 58:364–373

    Google Scholar 

  • Da Silva N, Shum WW, El-Annan J, Paunescu TG, McKee M, Smith PJ, Brown D, Breton S (2007) Relocalization of the V-ATPase B2 subunit to the apical membrane of epididymal clear cells of mice deficient in the B1 subunit. Am J Physiol 293:C199–C210

    Google Scholar 

  • Daly SE, Blostein R, Lane LK (1997) Functional consequences of a posttransfection mutation in the H2–H3 cytoplasmic loop of the alpha subunit of Na, K-ATPase. J Biol Chem 272:6341–6347

    Google Scholar 

  • Dempski RE, Lustig J, Friedrich T, Bamberg E (2008) Structural arrangement and conformational dynamics of the γ subunit of the Na+/K+-ATPase. Biochemistry 47:257–266

    Google Scholar 

  • Díaz F, Farfan C, Sierra E, Re AD (2001) Effects of temperature and salinity fluctuation on the ammonium excretion and osmoregulation of juveniles of Penacus vannamei, Boone. Mar Freshw Behav Physiol 34:93–104

    Google Scholar 

  • Díaz F, Re AD, Sierra E, Díaz-Iglesias E (2004) Effects of temperate and salinity fluctuation on the oxygen consumption, ammonium excretion and osmoregulation of the blue shrimp Litopenaeus stylirostris (Stimpson). J Shellfish Res 23:903–910

    Google Scholar 

  • Dröse S, Bindsei KU, Bowman EJ, Siebers A, Zeeck A, Altendor K (1993) Inhibitory effect of modified bafilomycins and concanamycins on P- and V-type adenosinetriphosphatases. Biochemistry 32:3902–3906

    Google Scholar 

  • Dugger DM, Dobkin S (1975) A contribution to the larval development of Macrobrachium olfersii (Wiegaman, 1836) (Decapoda, Palaemonidae). Crustaceana 29:1–30

    Google Scholar 

  • Durr KL, Tavraz NN, Dempski RE, Bamberg E, Friedrich T (2009) Functional significance of E2 state stabilization by specific α/β-Subunit interactions of Na, K- and H, K-ATPase. J Biol Chem 284:3842–3854

    Google Scholar 

  • Eguchi H, Takeda K, Schwarz W, Shirahata A, Kawamura M (2005) Involvement in K+ access of Leu318 at the extracellular domain flanking M3 e M4 of the Na+, K+ -ATPase α-subunit. Biochem Biophys Res Commun 330:611–614

    Google Scholar 

  • Ehrenfeld J, Klein U (1997) The key role of the H+ V-ATPase in acid-base balance and Na + transport processes in frog skin. J Exp Biol 200:247–256

    Google Scholar 

  • Einholm AP, Toustrup-Jensen M, Eersen JP, Vilven B (2005) Mutation of Gly-94 in transmembrane segment M1 of Na+, K+-ATPase interferes with Na+ e K+ binding in E2P conformation. Proc Natl Acad Sci U S A 102:11254–11259

    Google Scholar 

  • El-Beialy W, Galal N, Deyama Y, Yoshimura Y, Suzuki K, Tei K, Totsuka Y (2010) Regulation of human and pig renal Na+, K + -ATPase activity by tyrosine phosphorylation of their a1-subunits. J Membr Biol 233:119–126

    Google Scholar 

  • Elgavish A, Wallace RW, Pillion DJ, Meezan E (1984) Polyamines stimulate D-glucose transport in isolated renal brush-border membrane vesicles. Biochim Biophys Acta 777:1–8

    Google Scholar 

  • Engel DW (1977) Comparison of the osmoregulatory capabilities of two portunid crabs, Callinectes sapi dus and C. similis. Mar Biol 41:275–279

    Google Scholar 

  • Escalante R, García-Sáez A, Sastre L (1995) In situ hybridization analyses of Na, K ATPase α-subunit expression during early larval development of Artemia franciscana. J Histochem Cytochem 43:391–399

    Google Scholar 

  • Faleiros RO, Goldman MHS, Furriel RPM, McNamara JC (2010) Differential adjustment in gill Na+/K+- and V-ATPase activities and transporter mRNA expression during osmorregulatory acclimation in the cinnamom shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae). J Exp Biol 213:3894–3905

    Google Scholar 

  • Fedosova NU, Cornelius F, Klodos I (1998) E2P phosphoforms of (Na+, K+)-ATPase. I: comparison of phosphointermediates formed from ATP e Pi by their reactivity toward hydroxylamine e vanadate. Biochemistry 37:13634–13642

    Google Scholar 

  • Felder JM, Felder DL, Hand SC (1986) Ontogeny of osmoregulation in the estuarine ghost shrimp Callianassa jamaicense var. louisianensis Schmitt (Decapoda, Thalassinidea). J Exp Mar Biol Ecol 99:91–105

    Google Scholar 

  • Feraille E, Mordasini D, Gonin S, Deschenes G, Vinciguerra M, Doucet A, Veewalle A, Summa V, Verrey F, Martin PY (2003) Mechanism of control of (Na+, K+)-ATPase in principal cells of the mammalian collecting duct. Ann N Y Acad Sci 986:570–578

    Google Scholar 

  • Fernandes F, Loura LSM, Fedorov A, Dixon N, Kee TP, Pietro M, Hemminga MA (2006) Binding assays of inhibitors towards selected V-ATPase domains. Biochim Biophys Acta 1758:1777–1786

    Google Scholar 

  • Ficker E, Taglialatela M, Wible BA, Henley CM, Brown AM (1994) Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science 266:1068–1072

    Google Scholar 

  • Firmino KCS, Faleiros RO, Masui DC, McNamara JC, Furriel RPM (2011) Short- and long-term, salinity-induced modulation of V-ATPase activity in the posterior gills of the true freshwater crab, Dilocarcinus pagei (Brachyura, Trichodactylidae). Comp Biochem Physiol 160:24–31

    Google Scholar 

  • Florkin M, Schoffeniels E (1969) Molecular approaches to ecology. Academic, New York

    Google Scholar 

  • Forbush B III, Kaplan JH, Hoffman JF (1978) Characterization of a new photoaffinity derivative of ouabain: labeling of the large polypeptide and of a proteolipid component of the Na, K-ATPase. Biochemistry 17:3667–3676

    Google Scholar 

  • Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Mol Cell Biol 8:917–929

    Google Scholar 

  • Foster CA, Howse HD (1978) Morphological study on gills of brown shrimp, Penaeus aztecus. Tissue Cell 10:77–92

    Google Scholar 

  • França JL, Pinto MR, Lucena MN, Garçon DP, Valenti WC, McNamara JC (2013) Subcellular localization and kinetic characterization of a gill (Na+, K+)-ATPase from the giant freshwater prawn Macrobrachium rosenbergii. J Membr Biol 246:529–543

    Google Scholar 

  • Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, Keeling DJ, Andersson AK, Wallbrandt P, Zecca L, Notarangelo LD, Vezzoni P, Villa A (2000) Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 25:343–346

    Google Scholar 

  • Freire CA, McNamara JC (1995) Fine structure of the gills of the freshwater shrimp Macrobrachium olfersii (Decapoda): effect of acclimation to high salinity medium and evidence for involvement of the lamellar septum in ion uptake. J Crustac Biol 15:103–116

    Google Scholar 

  • Freire CA, Onken H, McNamara JC (2008) A structure–function analysis of ion transport in crustacean gills and excretory organs. Comp Biochem Physiol 151A:272–304

    Google Scholar 

  • Furriel RPM, McNamara JC, Leone FA (2000) Characterization of (Na+, K+)-ATPase in gill microsomes of the freshwater shrimp Macrobrachium olfersii. Comp Biochem Physiol 126B:303–315

    Google Scholar 

  • Furriel RPM, McNamara JC, Leone FA (2001) Nitrophenylphosphate as a tool to characterize gill (Na+, K+)-ATPase activity in hyperregulating Crustacea. Comp Biochem Physiol 130A:665–676

    Google Scholar 

  • Furriel RP, Masui DC, McNamara JC, Leone FA (2004) Modulation of gill Na+, K + -ATPase activity by ammonium ions: putative coupling of nitrogen excretion and ion uptake in the fresh water shrimp Macrobrachium olfersii. J Exp Zool 301:63–74

    Google Scholar 

  • Furriel RPM, Firmino KCS, Masui DC, Faleiros RO, Torres AH, McNamara JC (2010) Structural e biochemical correlates of (Na+, K+)-ATPase driven ion uptake across the true freshwater crab, Dilocarcinus pagei Brachyura, Trichodactylidae. J Exp Zool 313A:508–523

    Google Scholar 

  • Füzesi M, Gottschalk KE, Lindzen M, Shainskaya A, Küster B, Garty H, Karlish SDJ (2005) Covalent cross-links between the γ subunit (FXYD2) and α and β-Subunits of Na, K-ATPase. J Biol Chem 280:18291–18301

    Google Scholar 

  • Gache C, Rossi B, Lazdunski M (1977) Mechanistic analysis of the (Na+, K+)-ATPase using new pseudosubstrates. Biochemistry 16:2957–2965

    Google Scholar 

  • Gadsby DC, Bezanilla F, Rakowski RF, De Weer P, Holmgren M (2012) The dynamic relationships between the three events that release individual Na+ ions from the Na+/K+-ATPase. Nat Commun 3:699

    Google Scholar 

  • Gallo LC, Davel APC, Xavier FE, Rossoni LV (2010) Time-dependent increases in ouabain-sensitive Na+, K+ -ATPase activity in aortas from diabetic rats: the role of prostanoids and protein kinase C. Life Sci 87:302–308

    Google Scholar 

  • Garçon DP, Masui DC, Mantelatto FLM, McNamara JC, Furriel RPM, Leone FA (2007) K+ and NH4 + modulate gill (Na+, K+)-ATPase activity in the blue crab, Callinectes ornatus: fine tuning of ammonia excretion. Comp Biochem Physiol 147A:145–155

    Google Scholar 

  • Garçon DP, Masui DC, Mantelatto FLM, McNamara JC, Furriel RPM, Leone FA (2009) Hemolymph ionic regulation e adjustments in gill (Na+, K+)-ATPase activity during salinity acclimation in the swimming crab Callinectes ornatus (Decapoda, Brachyura). Comp Biochem Physiol 154A:44–55

    Google Scholar 

  • Garçon DP, Lucena MN, França JL, McNamara JC, Fontes CFL, Leone FA (2011) Na+, K+ -ATPase activity in the posterior gills of the blue crab, Callinectes ornatus (Decapoda, Brachyura): modulation of ATP hydrolysis by the biogenic amines spermidine and spermine. J Membr Biol 244:9–20

    Google Scholar 

  • Garçon DP, Lucena MN, Pinto MR, Fontes CFL, McNamara JC, Leone FA (2013) Synergistic stimulation by potassium and ammonium of K+-phosphatase activity in gill microsomes from the crab Callinectes ornatus acclimated to low salinity: novel property of a primordial pump. Arch Biochem Biophys 530:55–63

    Google Scholar 

  • Garty H, Karlish SJD (2006) Role of FXYD proteins in ion transport. Annu Rev Physiol 68:431–459

    Google Scholar 

  • Geering K (2000) Topogenic motifs in P-type ATPases. J Membr Biol 174:181–190

    Google Scholar 

  • Geering K (2008) Functional roles of Na, K-ATPase subunits. Curr Opin Nephrol Hypertens 17:526–532

    Google Scholar 

  • Genovese G, Ortiz N, Urcola MR, Luquet CM (2005) Possible role of carbonic anhydrase, V-H(+)-ATPase, and Cl(-)/HCO3- exchanger in electrogenic ion transport across the gills of the euryhaline crab Chasmagnathus granulatus. Comp Biochem Physiol 142A:362–369

    Google Scholar 

  • Gilles R, Péqueux AJR (1985) Ion transport in crustacean gills: physiological and ultrastructural approaches. In: Gilles R, Gilles-Baillien M (eds) Transport processes, iono- and osmoregulation. Springer, Heidelberg, pp 136–158

    Google Scholar 

  • Glynn IM (1985) The (Na+K+)-transporting adenosine triphosphatase. In: Martonosi AN (ed) The enzymes of biological membranes, vol 3. Plenum Press, New York, pp 35–114

    Google Scholar 

  • Glynn IM (2002) A hundred years of sodium pumping. Annu Rev Physiol 64:1–18

    Google Scholar 

  • Gocheva V, Joyce J, Johanna A (2007) Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 6:60–64

    Google Scholar 

  • Gonçalves RR, Masui DC, McNamara JC, Mantellato FLM, Garcon DP, Furriel RPM, Leone FA (2006) A kinetic study of the gill (Na+, K+)-ATPase, and its role in ammonia excretion in the intertidal hermit crab, Clibanarius vittatus. Comp Biochem Physiol 145A:346–356

    Google Scholar 

  • Gong XM, Ding Y, Yao Y, Marassi FM (2015) Structure of the Na, K-ATPase regulatory protein FXYD2b in micelles: implications for membrane-water interfacial arginines. Biochim Biophys Acta 1848:299–306

    Google Scholar 

  • Goodman SH, Cavey MJ (1990) Organization of a phyllobranchiate gill from the green shore crab Carcinus maenas (Crustacea, Decapoda). Cell Tissue Res 260:495–505

    Google Scholar 

  • Gross MG (1972) Oceanography: a view of the earth. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Hansen O (2003) No evidence for a role in signal-transduction of Na(+)/K(+)-ATPase interaction with putative endogenous ouabain. Eur J Biochem 270:1916–1919

    Google Scholar 

  • Haond C, Bonnal L, Sandeaux R, Charmantier G, Trilles JP (1999) Ontogeny of intracellular isosmotic regulation in the European lobster Homarus gammarus (L.). Physiol Biochem Zool 72:534–544

    Google Scholar 

  • Harris RR, Bayliss D (1988) Gill (Na+, K+)-ATPases in decapod crustaceans: distribution and characteristics in relation to Na + regulation. Comp Biochem Physiol 90A:303–308

    Google Scholar 

  • Harris RR, Santos MCF (1993) Sodium uptake and transport (Na+ K+)ATPase changes following Na+ depletion and low salinity acclimation in the mangrove crab Ucides cordatus (L.). Comp Biochem Physiol 105A:35–42

    Google Scholar 

  • Harris RR, Coley S, Collins S, McCabe R (2001) Ammonia uptake and its effects on ionoregulation in the freshwater crayfish, Pacifastacus leniusculus (Dana). J Comp Physiol 171B:681–693

    Google Scholar 

  • Hasler U, Crambert G, Horisberger JD, Geering K (2001) Structural and functional features of the transmembrane domain of the Na, K-ATPase b subunit revealed by tryptophan scanning. J Biol Chem 276:16356–16364

    Google Scholar 

  • Havird JC, Santos SR, Henry RP (2014) Osmoregulation in the Hawaiian anchialine shrimp Halocaridina rubra (Crustacea: Atyidae): expression of ion transporters, mitochondria-rich cell proliferation and hemolymph osmolality during salinity transfers. J Exp Biol 217:2309–2320

    Google Scholar 

  • Hayd L, Anger K (2013) Reproductive and morphometric traits of Macrobrachium amazonicum (Decapoda: Palaemonidae) from the Pantanal, Brazil, suggests initial speciation. Rev Biol Trop (Int J Trop Biol) 61:39–57

    Google Scholar 

  • Hebert H, Purhonen P, Thomsen K, Vorum H, Maunsbach AB (2003) Renal Na, K-ATPase structure from cryo-electron microscopy of two dimensional crystals. Ann N Y Acad Sci 986:9–16

    Google Scholar 

  • Heby O (1989) Polyamines and cell differentiation. In: Bachrach U, Heimer YM (eds) The physiology of polyamines, vol 1. CRC Press, Boca Raton, pp 83–94

    Google Scholar 

  • Heinrich-Hirsch B, Ahlers J, Peter HW (1977) Inhibition of Na+, K +-ATPase from chick brain by polyamines. Enzyme 22:235–241

    Google Scholar 

  • Henry RP (1988a) Subcellular distribution of carbonic anhydrase activity in the gill of the blue crab, Callinectes sapidus. J Exp Zool 245:1–8

    Google Scholar 

  • Henry RP (1988b) Multiple functions of gill carbonic anhydrase. J Exp Zool 248:19–24

    Google Scholar 

  • Henry RP, Wheatly MG (1992) Interaction of respiration ion regulation, and acid-base balance in the everyday life of aquatic crustaceans. Am Zool 32:407–416

    Google Scholar 

  • Henry RP, Lucu C, Onken H, Weihrauch D (2012) Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Front Physiol 3:431

    Google Scholar 

  • Hirata T, Iwamoto-Kihara A, Sun-Wada GH, Okajima T, Wada Y, Futai M (2003) Subunit rotation of vacuolar-type proton pumping ATPase: relative rotation of the G and C subunits. J Biol Chem 278:23714–23719

    Google Scholar 

  • Holliday CW (1985) Salinity-induced changes in gill Na, K-ATPase activity in the mud fiddler crab Uca pugnax. J Exp Zool 233:199–208

    Google Scholar 

  • Holliday CW, Miller DS (1984) PAH excretion in 2 species of cancroids crab Cancer-irroratus and Cancer-borealis. Am J Physiol 246:R364–R368

    Google Scholar 

  • Hölttä E (1977) Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase. Biochemistry 16:91–100

    Google Scholar 

  • Horisberger JD (2004) Recent insights into the structure e mechanism of the sodium pump. Physiology 19:377–388

    Google Scholar 

  • Huss M, Weczorek M (2009) Inhibitors of V-ATPases: old and new players. J Exp Biol 212:341–346

    Google Scholar 

  • Igarashi K, Kashiwagi K (1999) Polyamine transport in bacteria and yeast. Biochem J 344:33–42

    Google Scholar 

  • Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51

    Google Scholar 

  • Imagawa T, Yamamoto T, Kaya S, Sakaguchi K, Taniguchi K (2005) Thr-774 (transmembrane segment M5), Val-920 (M8), and Glu-954 (M9) are involved in Na+ transport, and Gln-923 (M8) is essential for Na, K-ATPase activity. J Biol Chem 280:18736–18744

    Google Scholar 

  • Ituarte RB, Spivak ED, Anger K (2005) Effects of salinity on embryonic development of Palaemonetes argentinus (Crustacea: Decapoda: Palaemonidae) cultured in vitro. Invertebr Reprod Dev 47:213–223

    Google Scholar 

  • Ituarte RB, Mañanes AAL, Spivak ED, Anger K (2008) Activity of Na+, K + -ATPase in a freshwater shrimp, Palaemonetes argentinus (Caridea, Palaemonidae): ontogenetic and salinity-induced changes. Aquat Biol 3:283–290

    Google Scholar 

  • Iwata M, Imamura H, Stambouli E, Ikeda C, Tamakoshi M, Nagata K, Makyio H, Hankamer B, Barber J, Yoshida M, Yokoyama K, Iwata S (2004) Crystal structure of a central stalk subunit C and reversible association/dissociation of vacuole-type ATPase. Proc Natl Acad Sci U S A 101:59–64

    Google Scholar 

  • Jänne J, Alhonen L, Leinonen P (1991) Polyamines – from molecular biology to clinical applications. Ann Med 23:241–259

    Google Scholar 

  • Jänne J, Alhonen L, Pietilä M, Keinänen TA (2004) Genetic approaches to the cellular functions of polyamines in mammals. Eur J Biochem 271:877–894

    Google Scholar 

  • Jantaro S, Maenpaa P, Mulo P, Incharoensakdi A (2003) Content e biosynthesis of polyamines in salt and osmotically stressed cells of Synechocystis sp PCC 6803. FEMS Microbiol Lett 228:129–135

    Google Scholar 

  • Jefferies KC, Cipriano DJ, Forgac M (2008) Function, structure and regulation of the vacuolar (H+)-ATPases. Arch Biochem Biophys 476:33–42

    Google Scholar 

  • Jellink PH, Perry G (1967) Effect of polyamines on the metabolism of [16-14C]estradiol by rat-liver microsomes. Biochim Biophys Acta 137:367–374

    Google Scholar 

  • Jensen AML, Sorensen TLM, Olesen C, Moller JV, Nissen P (2006) Modulatory and catalytic modes of ATP binding by the calcium pump. EMBO J 25:2305–2314

    Google Scholar 

  • Jiang DH, Lawrence AL, Neill WH, Gong H (2000) Effects of temperature and salinity on nitrogen excretion by Litopenaeus vannamei juveniles. J Exp Mar Biol Ecol 253:193–209

    Google Scholar 

  • Jimenez T, Sanchez G, Wertheimer E, Blanco G (2010) Activity of the Na, K-ATPase α4 isoform is important for membrane potential, intracellular Ca2+, and pH to maintain motility in rat spermatozoa. Reproduction 139:835–845

    Google Scholar 

  • Jimenez T, Sanchez G, McDermott JP, Nguyen AN, Kumar TR, Blanco G (2011) Increased expression of the Na, K-ATPase alpha4 isoform enhances sperm motility in transgenic mice. Biol Reprod 84:153–161

    Google Scholar 

  • Johansson VM, Miniotis MF, Hegardt C, Jönsson G, Staaf J, Berntsson PS, Oredsson SM, Alm K (2008) Effect of polyamine deficiency on proteins involved in Okazaki fragment maturation. Cell Biol Int 32:1467–1477

    Google Scholar 

  • Jorgensen PL, Nielsen JM, Rasmussen JH, Pedersen PA (1998) Structure-function relationships of E-1-E-2 transitions e cation binding in Na, K-pump protein. Biochim Biophys Acta 1365:65–70

    Google Scholar 

  • Jorgensen PL, Hakansson KO, Karlish SJD (2003) Structure and mechanism of functional sites and their interactions. Annu Rev Physiol 65:817–849

    Google Scholar 

  • Kalac P (2009) Recent advances in the research on biological roles of dietary polyamines in man. J Appl Biomed 7:65–74

    Google Scholar 

  • Kalber FA, Costlow JD (1966) The ontogeny of osmoregulation and its neurosecretory control in the decapod crustacean Rhithropanopeus harrisii. Am Zool 6:221–229

    Google Scholar 

  • Kanai R, Ogawa H, Vilsen B, Cornelius F, Toyoshima C (2013) Crystal structure of a Na + -bound Na+, K+ -ATPase preceding the E1 state. Nature 502:201–207

    Google Scholar 

  • Kane PM (2006) The where, when and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol Mol Biol Rev 70:177–191

    Google Scholar 

  • Kaplan JH (2002) Biochemistry of Na, K-ATPase. Annu Rev Biochem 71:511–535

    Google Scholar 

  • Karitskaya I, Aksenov N, Vassilieva I, Zenin V, Marakhova I (2010) Long-term regulation of Na, K-ATPase pump during T-cell proliferation. Eur J Phys 460:777–789

    Google Scholar 

  • Kawasaki-Nishi S, Nishi T, Forgac M (2003) Proton translocation driven by ATP hydrolysis in V-ATPases. FEBS Lett 545:76–85

    Google Scholar 

  • Khalid M, Fouassier G, Apell HJ, Cornelius F, Clarke RJ (2010) Interaction of ATP with the phosphosphoenzyme of the Na+, K + -ATPase. Biochemistry 49:1248–1258

    Google Scholar 

  • Khalid M, Suliman R, Ahmed R, Salin H, Clarke RJ (2014) The high and low affinity binding sites of digitalis glycosides to Na, K-ATPase. Arab J Sci Eng 39:75–85

    Google Scholar 

  • Khodabandeh S, Kutnik M, Aujoulat F, Charmantier G, Charmantier-Daures M (2005a) Ontogeny of the antennal glands in the crayfish Astacus leptodactylus (Crustacea, Decapoda): immunolocalization of Na+, K+ -ATPase. Cell Tissue Res 319:167–174

    Google Scholar 

  • Khodabandeh S, Charmantier G, Charmantier-Daures M (2005b) Ultrastructural studies and Na+, K+ -ATPase immunolocalization in the antennal urinary glands of the lobster Homarus gammarus (Crustacea, Decapoda). J Histochem Cytochem 53:1203–1214

    Google Scholar 

  • Khodabandeh S, Charmantier G, Charmantier-Daures M (2006) Immunolocalization of Na+, K +-ATPase in osmoregulatory organs during the embryonic and post embryonic development of the lobster Homarus gammarus. J Crustac Biol 26:515–523

    Google Scholar 

  • Kirschner LB (2004) The mechanism of sodium chloride uptake in hyperregulating aquatic animals. J Exp Biol 207:1439–1452

    Google Scholar 

  • Kobayashi M, Fujisaki H, Sugawara M, Iseki K, Miyazaki K (1999) The presence of an Na+/spermine antiporter in the rat renal brush-border membrane. J Pharm Pharmacol 51:279–284

    Google Scholar 

  • Koenig H, Goldstone A, Lu CY (1983) Polyamines regulate calcium fluxes in a rapid plasma membrane response. Nature 305:530–534

    Google Scholar 

  • Koroleff F (1983) Determination of ammonia. In: Grasshoff K, Ehrhart M, Kremling K (eds) Methods of seawater analysis. Verlag Chemie, Weinheim, pp 150–151

    Google Scholar 

  • Kosiol B, Bigalke T, Graszynski K (1988) Purification e characterization of gill Na+, K + -ATPase in the freshwater crayfish Orconectes limosus Rafinesque. Comp Biochem Physiol 89B:171–177

    Google Scholar 

  • Kozik P, Hodson NA, Sahlender DA, Simecek N, Soromani C, Wu J, Collinson LM, Robinson MS (2013) A human genome-wide screen for regulators of clathrin-coated vesicle formation reveals an unexpected role for the V-ATPase. Nat Cell Biol 15:50–60

    Google Scholar 

  • Kuntzweiler TA, Wallick ET, Johnson CL, Lingrel JB (1995) Glutamic-acid-327 in the sheep alpha-1 isoform of Na+, K +-ATPase stabilizes a K + -induced conformational change. J Biol Chem 270:2993–3000

    Google Scholar 

  • Lai FF, Madan N, Ye QQ, Duan QM, Li ZC, Wang SM, Si SY, Xie ZJ (2013) Identification of a mutant α1 Na/K-ATPase that pumps but is defective in signal transduction. J Biol Chem 288:13295–13304

    Google Scholar 

  • Lang F, Waldegger S (1997) Regulating cell volume. Am Sci 85:456–463

    Google Scholar 

  • Lange R (1972) Some recent work on osmotic, ionic and volume regulation in marine animals. Oceanograph mar. J Cell Biol 10:97–136

    Google Scholar 

  • Larsen EH, Willumsen NJ, Christoffersen BC (1992) Role of proton pump of mitochondria-rich cells for active transport of chloride ions in toad skin epithelium. J Physiol 450:203–216

    Google Scholar 

  • Laughery MD, Todd ML, Kaplan JH (2003) Mutational analysis of alpha-beta subunit interactions in the delivery of Na, K-ATPase heterodimers to the plasma membrane. J Biol Chem 278:34794–34803

    Google Scholar 

  • Laursen M, Gregersen GL, Yatime L, Nissen P, Fedesova NU (2015) Structures and characterization of digoxin- and bufalin-bound Na+, K + -ATPase compared with the ouabain-bound complex. Proc Natl Acad Sci U S A 112:1755–1760

    Google Scholar 

  • Le Moullac G, Haffner P (2000) Environmental factors affecting immune responses in Crustacea. Aquaculture 191:121–131

    Google Scholar 

  • Lecuona E, Sun H, Chen J, Trejo HE, Baker MA, Sznajder JI (2013) Protein kinase A-Ia regulates Na, K-ATPase endocytosisin alveolar epithelial cells exposed to high CO2 concentrations. Am J Respir Cell Mol Biol 48:626–634

    Google Scholar 

  • Lee KJ (1992) Developmental regulation of Na,K-ATPase activity in the brine shrimp Artemia: response to salinity and the potential regulatory role of polyamines. M.S. thesis, University of Alabama at Birmingham, pp 66

    Google Scholar 

  • Lee CE, Bell MA (1999) Causes and consequences of recent freshwater invasions by saltwater animals. Trends Ecol Evol 14:284–288

    Google Scholar 

  • Lee CE, Kiergaard M, Gelembiuk GW, Eads BD, Posavi M (2011) Pumping ions: rapid parallel evolution of ionic regulation following habitat invasions. Evolution 65:2229–2244

    Google Scholar 

  • Leone FA, Furriel RPM, McNamara JC, Mantelatto FLM, Masui DC, Rezende LA, Gonçalves RR, Garçon DP (2005) (Na+, K+)-ATPase from crustacean gill microsomes: a molecular marker to evaluate adaptation to biotopes of different salinity. Trends Comp Biochem Physiol 11:1–15

    Google Scholar 

  • Leone FA, Masui DC, Bezerra TMS, Garçon DP, Valenti WC, Augusto AS, McNamara JC (2012) Kinetic analysis of gill (Na+, K+)-ATPase activity in selected ontogenetic stages of the Amazon river shrimp, Macrobrachium amazonicum (Decapoda, Palaemonidae): interactions at ATP- and cation-binding sites. J Membr Biol 245:201–215

    Google Scholar 

  • Leone FA, Lucena MN, Garçon DP, Pinto MR, McNamara JC (2013) Gill (Na+, K+)-ATPase in the diadromous palaemonid shrimp Macrobrachium amazonicum: kinetic characterization of K+-phosphatase activity in juveniles and adults. Trends Comp Biochem Physiol 17:13–28

    Google Scholar 

  • Leone FA, Bezerra TMS, Garçon DP, Lucena MN, Pinto MR, Fontes CFL, McNamara JC (2014) Modulation by K+ plus NH4 + of microsomal (Na+, K+)-ATPase activity in selected ontogenetic stages of the diadromous river shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae). PLoS One 9(2):e89626

    Google Scholar 

  • Leone FA, Lucena MN, Rezende LA, Garçon DP, Pinto MR, Mantelatto FLM, McNamara JC (2015a) Kinetic characterization and immunolocalization of (Na+, K+)-ATPase activity from gills of the marine seabob shrimp Xiphopenaeus kroyeri (Decapoda, Penaeidae). J Membr Biol 248:257–272

    Google Scholar 

  • Leone FA, Garçon DP, Lucena MN, Faleiros RO, Azevedo SV, Pinto MR, McNamara JC (2015b) Gill specific (Na+, K+)-ATPase activity and α-subunit mRNA expression during low-salinity acclimation of the ornate crab Callinectes ornatus (Decapoda, Brachyura). Comp Biochem Physiol 186B:59–67

    Google Scholar 

  • Lignot JH, Charmantier G (2001) Immunolocalization of NA+, K+ -ATPase in the branchial cavity during the early development of the European Lobster Homarus gammarus (Crustacea, Decapoda). J Histochem Cytochem 49:1013–1023

    Google Scholar 

  • Lima AG, McNamara JC, Terra WR (1997) Regulation of hemolymph osmolytes and gill Na+/K+-ATPase activities during acclimation to saline media in the freshwater shrimp Macrobrachium olfersii (Wiegmann, 1836) (Decapoda, Palaemonidae). J Exp Mar Biol Ecol 215:81–91

    Google Scholar 

  • Lin H, Randall DJ (1993) H+-ATPase activity in crude homogenates of fish gill tissue: inhibitor sensitivity and environmental and hormonal regulation. J Exp Biol 180:163–174

    Google Scholar 

  • Lin X, Fenn E, Veenstra RD (2006) An amino-terminal lysine residue of rat connexin 40 that is required for spermine block. J Physiol 570:251–269

    Google Scholar 

  • Lingrel JB (2010) The physiological significance of the cardiotonic steroid/ouabain-binding site of the Na, K-ATPase. Annu Rev Physiol 72:395–412

    Google Scholar 

  • Lingrel J, Moseley A, Dostanic I, Cougnon M, He SW, James P, Woo A, O’connor K, Neumann J (2003) Functional roles of the α isoforms of the (Na+, K+)-ATPase. Ann N Y Acad Sci 986:354–359

    Google Scholar 

  • Liu J, Xie ZJ (2010) The sodium pump and cardiotonic steroids-induced signal transduction protein kinases and calcium-signaling microdomain in regulation of transporter trafficking. Biochim Biophys Acta 1802:1237–1245

    Google Scholar 

  • Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369

    Google Scholar 

  • Lovett DL, Watts SA (1995) Changes in polyamine levels in response to acclimation salinity in gills of the blue-crab Callinectes-sapidus rathbun. Comp Biochem Physiol 110B:115–119

    Google Scholar 

  • Lubarski I, Karlish SJD, Garty H (2007) Structural e functional interactions between FXYD5 and the Na+-K+-ATPase. Am J Physiol 293:F1818–F1826

    Google Scholar 

  • Lucas TFG, Amaral LS, Porto CS, Quintas LEM (2012) NaC/KC-ATPase a1 isoform mediates ouabain-induced expression of cyclin D1 and proliferation of rat Sertoli cells. Reproduction 144:737–745

    Google Scholar 

  • Lucena MN, Garçon DP, Mantelatto FLM, Pinto MR, McNamara JC, Leone FA (2012) Hemolymph ion regulation and kinetic characteristics of the gill (Na+, K+)-ATPase in the hermit crab Clibanarius vittatus (Decapoda, Anomura) acclimated to high salinity. Comp Biochem Physiol 161B:380–391

    Google Scholar 

  • Lucena MN, Pinto MR, Garcon DP, McNamara JC, Leone FA (2015) A kinetic characterization of the gill V(H(+))-ATPase in juvenile and adult Macrobrachium amazonicum, a diadromous palaemonid shrimp. Comp Biochem Physiol 181B:15–25

    Google Scholar 

  • Lucena MN, Pinto MR, Garçon DP, Fontes CFL, McNamara JC, Leone FA (2016) (Na+, K+)-ATPase of juvenile and adult Macrobrachium amazonicum: effect of polyamines on phophoenzyme-linked partial reactions. Submitted

    Google Scholar 

  • Lucu C (1990) Ionic regulatory mechanisms in crustacean gill epithelia. Comp Biochem Physiol 97A:297–306

    Google Scholar 

  • Lucu C, Flik G (1999) (Na+, K+)-ATPase and Na+, Ca2+ exchange activities in gills of hyperregulating Carcinus maenas. Am J Physiol 276:R490–R499

    Google Scholar 

  • Lucu C, Siebers D (1987) Linkage of Cl fluxes with ouabain sensitive Na/K exchange through Carcinus gill epithelia. Comp Biochem Physiol 87A:807–811

    Google Scholar 

  • Lucu C, Towle DW (2003) (Na+, K+)-ATPase in gills of aquatic crustacea. Comp Biochem Physiol 135A:195–214

    Google Scholar 

  • Lucu C, Devescovi M, Siebers D (1989) Do amiloride and ouabain affect ammonia fluxes in perfused Carcinus gill epithelia? J Exp Zool 249:1–5

    Google Scholar 

  • Lucu C, Devescovi M, Skaramuca B, Kozul V (2000) Gill NaK-ATPase in the spiny lobster Palinurus elephas and other marine osmoconformers. Adaptiveness of enzymes from osmoconformity to hyperregulation. J Exp Mar Biol Ecol 246:163–178

    Google Scholar 

  • Luquet CM, Postel U, Halperin J, Urcola MR, Marques R, Siebers D (2002) Transepithelial potential differences and Na+ flux in isolated perfused gills of the crab Chasmagnathus granulatus (Grapsidae) acclimated to hyper- and hypo-salinity. J Exp Biol 205:71–77

    Google Scholar 

  • Luquet CM, Weihrauch D, Senek M, Towle DW (2005) Induction of branchial ion transporter mRNA expression during acclimation to salinity change in the euryhaline crab Neohelice granulatus. J Exp Biol 208:3627–3636

    Google Scholar 

  • Macı́as MT, Palmero I, Sastre L (1991) Cloning of a cDNA encoding an Artemia franciscana Na/K ATPase α-subunit. Gene 105:197–204

    Google Scholar 

  • Magalhães C (1985) The larval development of palaemonids from amazon region reared in the laboratory. 1. Macrobrachium amazonicum (Heller, 1862) (Crustacea, Decapoda). Amazoniana, series Limnologia et oecologia regionalis systemae fluminis amazonas 9:247–274

    Google Scholar 

  • Magalhães C, Walker I (1988) Larval development and ecological distribution of central Amazonian palaemonid shrimps (Decapoda, Caridea). Crustaceana 55:279–292

    Google Scholar 

  • Mahmmoud YA, Shattock M, Cornelius F, Pavlovic D (2014) Inhibition of K+ transport through Na+, K + -ATPase by Capsazepine: role of membrane span 10 of the alpha subunit in the moduklation of ion gating. PLoS One 9:e96909

    Google Scholar 

  • Maijala RL, Eerola SH (1993) Contaminant lactic acid bacteria of dry sausages produce histamine and tyramine. Meat Sci 35:387–395

    Google Scholar 

  • Mantel LH, Farmer LL (1983) Osmotic and ionic regulation. In: Mantel LH (ed) The biology of the Crustacea, vol 5, Internal anatomy and physiological regulation. Academic, New York, pp 53–161

    Google Scholar 

  • Mantel LH, Olson JR (1976) Studies on the Na + K+-activated ATPase of crab gills. Am Zool 16:223

    Google Scholar 

  • Martin DW (2005) Structure-function. Relationships in the Na+, K+ -pump. Semin Nephrol 198:282–291

    Google Scholar 

  • Martin M, Fehsenfeld S, Sourial MM, Weihrauch D (2011) Effects of high environmental ammonia on branchial ammonia excretion rates and tissue Rh-protein mRNA expression levels in sea water acclimated Dungeness crab Metacarcinus magister. Comp Biochem Physiol 160A:267–277

    Article  CAS  Google Scholar 

  • Marton LJ, Pegg AE (1995) Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol 35:55–91

    Article  CAS  PubMed  Google Scholar 

  • Masui DC, Furriel RPM, McNamara JC, Mantelatto FLM, Leone FA (2002) Modulation by ammonium ions of gill microsomal (Na+, K+)-ATPase in the swimming crab Callinectes danae: a possible mechanism for regulation of ammonia excretion. Comp Biochem Physiol 132C:471–482

    Google Scholar 

  • Masui DC, Furriel RPM, Mantelatto FLM, McNamara JC, Leone FA (2003) Gill (Na+, K+)-ATPase from the blue crab Callinectes danae: modulation of K + -phosphatase activity by potassium and ammonium ions. Comp Biochem Physiol 134B:631–640

    Google Scholar 

  • Masui DC, Furriel RPM, Mantelatto FLM, McNamara JC, Leone FA (2005a) K+ -phosphatase activity of gill (Na+, K+)-ATPase from the blue crab, Callinectes danae: low-salinity acclimation and expression of the alpha-subunit. J Exp Zool 303A:294–307

    Google Scholar 

  • Masui DC, Furriel RPM, Silva ECC, Mantelatto FLM, McNamara JC, Barrabin H, Scofano HM, Fontes CFL, Leone FA (2005b) Gill microsomal (Na+, K+)-ATPase from the blue crab Callinectes danae: interactions at cationic sites. Int J Biochem Cell Biol 37:2521–2535

    Google Scholar 

  • Masui DC, Silva ECC, Mantelatto FLM, McNamara JC, Barrabin H, Scofano HM, Fontes CFL, Furriel RPM, Leone FA (2008) The crustacean gill (Na+, K+)-ATPase: allosteric modulation of high- and low-affinity ATP-binding sites by sodium and potassium. Arch Biochem Biophys 479:139–144

    Google Scholar 

  • Masui DC, Mantelatto FLM, McNamara JC, Furriel RPM, Leone FA (2009) (Na+, K+)-ATPase activity in gill microsomes from the blue crab, Callinectes danae, acclimated to low salinity: novel perspectives on ammonia excretion. Comp Biochem Physiol 153A:141–148

    Article  CAS  Google Scholar 

  • McDermott J, Sánchez G, Nangia AK, Blanco G (2015) Role the human Na, K-ATPase alpha 4 in sperm function, derived from studies in transgenic mice. Mol Reprod Dev 82:167–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNamara JC, Faria SC (2012) Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea: a review. J Comp Physiol 182:997–1014

    Article  CAS  Google Scholar 

  • McNamara JC, Lima AG (1997) The route of ion and water movements across the gill epithelium of the freshwater shrimp Macrobrachium olfersii (Decapoda, Palaemonidae): evidence from ultrastructural changes induced by acclimation to saline media. Biol Bull 192:321–331

    Article  Google Scholar 

  • McNamara JC, Torres AH (1999) Ultracytochemical location of Na+/K+-ATPase activity and effect of high salinity acclimation in gill and renal epithelia of the freshwater shrimp Macrobrachium olfersii (Crustacea, Decapoda). J Exp Zool 284:617–628

    Article  CAS  PubMed  Google Scholar 

  • McNamara JC, Moreira GS, Moreira PS (1983) The effect of salinity on respiratory metabolism, survival and moulting in the first zoea of Macrobrachium amazonicum (Heller) (Crustacea, Palaemonidae). Hydrobiologia 101:239–242

    Article  Google Scholar 

  • McNamara JC, Freire CA, Torres AH, Coelho SC (2015) The conquest of fresh water by the palaemonid shrimps: an evolutionary history scripted in the osmoregulatory epithelia of the gills and antennal glands. Biol J Linn Soc 114:673–688

    Article  Google Scholar 

  • Meier S, Tavraz NN, Durr KL, Friedrich T (2010) Hyperpolarization-activated inward leakage currents caused by deletion or mutation of carboxy-terminal tyrosines of the Na+/K+ -ATPase α subunit. J Gen Physiol 135:115–134

    Google Scholar 

  • Mendonça NN, Masui DC, McNamara JC, Leone FA, Furriel RPM (2007) Long- term exposure of the freshwater shrimp Macrobrachium olfersii to elevated salinity: effects on gill (Na+, K+)-ATPase α-subunit expression e K+ -phosphatase activity. Comp Biochem Physiol 146A:534–543

    Google Scholar 

  • Meriney SD, Gray DB, Pilar GR (1994) Somatostatin-induced inhibition of neuronal Ca2+ current modulated by cGMP-dependent protein kinase. Nature 369:336–339

    Google Scholar 

  • Middleton DA, Hughes E, Esmann M (2011) The conformation of ATP within the Na, K-ATPase nucleotide site: a statistically constrained analysis of REDOR solid-state NMR sata. Angew Chem Int Ed 50:7041–7044

    Article  CAS  Google Scholar 

  • Mijatovic T, vanQuaquebeke E, Delest B, Debeir O, Darro F, Kiss R (2007) Cardiotonic steroids on the road to anticancer therapy. Biochim Biophys Acta 1776:32–57

    CAS  PubMed  Google Scholar 

  • Miles AJ, Fedosova NU, Hoffmann SV, Wallace BA, Esmann M (2013) Stabilisation of Na, K-ATPase structure by the cardiotonic steroid ouabain. Biochem Biophys Res Commun 435:300–305

    Article  CAS  PubMed  Google Scholar 

  • Mishra NK, Peleg Y, Cirri E, Belogus T, Lifshitz Y, Voelker DR, Apell HJ, Garty H, Karlish SJD (2011) FXYD proteins stabilize Na, K-ATPase amplification of specific phosphatidylserine-protein interactions. J Biol Chem 286:9699–9712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mladinov D, Liu Y, Mattson DL, Liang M (2013) Micro RNAs contribute to the maintenance of cell-type-specific physiological characteristics: miR-192 targets Na+/K +-ATPase. Nucleic Acids Res 41:1273–1283

    Google Scholar 

  • Mobasheri A, Avila J, Cozar-Castellano I, Brownleader MD, Trevan M, Francis MJO, Lamb JF, Martin-Vasallo P (2000) (Na+, K+)-ATPase isozyme diversity; comparative biochemistry e physiological implications of novel functional interactions. Biosci Rep 20:51–91

    Google Scholar 

  • Montes MR, Monti JLE, Rossi RC (2012) E2 → E1 transition and Rb + release induced by Na + in the Na+/K + -ATPase. Vanadate as a tool to investigate the interaction between Rb + and E2. Biochim Biophys Acta 1818:2087–2093

    Google Scholar 

  • Monti JLE, Montes MR, Rossi RC (2013) Alternative cycling modes of the Na+/K+-ATPase in the presence of either Na+ or Rb+. Biochim Biophys Acta 1828:1374–1383

    Article  CAS  PubMed  Google Scholar 

  • Moreira GS, McNamara JC, Shumway SE, Moreira PS (1983) Osmoregulation and respiratory metabolism in Brazilian Macrobrachium (Decapoda, Palaemonidae). Comp Biochem Physiol 74A:57–62

    Article  Google Scholar 

  • Moreira GS, McNamara JC, Moreira PS (1986) The effect of salinity on the upper thermal limits of survival and metamorphosis during larval development in Macrobrachium amazonicum (Heller) (Decapoda, palaemonidae). Crustaceana 50:231–238

    Article  Google Scholar 

  • Morris S (2001) Neuroendocrine regulation of osmoregulation e the evolution of air-breathing in decapods crustaceans. J Exp Biol 204:979–989

    CAS  PubMed  Google Scholar 

  • Morris S, Edwards T (1995) Control of osmoregulation via regulation of Na+/K+-ATPase activity in the amphibious purple shore crab, Leptograpsus variegatus. Comp Biochem Physiol 112C:129–136

    CAS  Google Scholar 

  • Morth JP, Pedersen BP, Toustrup-Jensen MS, Sorensen TLM, Petersen J, Eersen JP, Vilsen B, Nissen P (2007) Crystal structure of the sodium–potassium pump. Nature 450:1043–1050

    Article  CAS  PubMed  Google Scholar 

  • Morth JP, Pedersen BP, Buch-Pedersen MJ, Andersen JP, Vilsen B, Palmgren MG, Nissen P (2011) A structural overview of the plasma membrane Na+, K+ -ATPase and H+ -ATPase ion pumps. Nat Rev Mol Cell Biol 60:60–70

    Google Scholar 

  • Muller O, Bayer MJ, Peters C, Andersen JS, Mann M, Mayer A (2002) The Vtc proteins in vacuole fusion: coupling NSF activity to V(0) trans-complex formation. EMBO J 21:259–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munhoz CD, Kawamoto EM, de Sa Lima L, Lepsch LB, Glezer I, Marcourakis T, Scavone C (2005) Glutamate modulates sodium–potassium-ATPase through cyclic GMP and cyclic GMP-dependent protein kinase in rat striatum. Cell Biochem Funct 23:115–123

    Article  CAS  PubMed  Google Scholar 

  • Murata Y, Sun-Wada GH, Yoshimizu T, Yamamoto A, Wada Y, Futai M (2002) Differential localization of the vacuolar H+ pump with G subunit isoforms (G1 and G2) in mouse neurons. J Biol Chem 277:36296–36303

    Google Scholar 

  • Myers SL, Cornelius F, Apell HJ, Clarke RJ (2011) Kinetics of K+ occlusion by the phosphoenzyme of the Na+, K + -ATPase. Biophys J 100:70–79

    Google Scholar 

  • Nakanishi-Matsui M, Sekiya M, Nakamoto RK, Futai M (2010) The mechanism of rotating proton pumping ATPases. Biochim Biophys Acta 1797:1343–1352

    Article  CAS  PubMed  Google Scholar 

  • Nesher M, Shpolansky U, Rosen H, Lichtstein D (2007) The digitalis-like steroid hormones: new mechanisms of action and biological significance. Life Sci 80:2093–2107

    Article  CAS  PubMed  Google Scholar 

  • Neufeld GJ, Holliday CW, Pritchard JB (1980) Salinity adaptation of gill Na, K-ATPase in the blue crab, Callinectes sapidus. J Exp Zool 211:215–224

    Google Scholar 

  • Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103

    Article  CAS  PubMed  Google Scholar 

  • Nishi T, Kawasaki-Nishi S, Forgac M (2003) Expression and function of the mouse V-ATPase d subunit isoforms. J Biol Chem 278:46396–46402

    Article  CAS  PubMed  Google Scholar 

  • Nishimura K, Nakatsu F, Kashiwagi K, Ohno H, Saito T, Igarashi K (2002) Essential role of S-adenosylmethionine decarboxylase in mouse embryonic development. Genes Cells 7:41–47

    Article  CAS  PubMed  Google Scholar 

  • Nyblom M, Poulsen H, Gourdon P, Reinhard I, Andersson M (2013) Crystal structure of Na+, K+-ATPase in the Na+-bound state. Science 342:123–127

    Article  CAS  PubMed  Google Scholar 

  • Odinetz-Collart O (1991) Stratégie de reproduction de Macrobrachium amazonicum en Amazonie Centrale (Decapoda, Caridea, Palaemonidae). Crustaceana 61:253–270

    Article  Google Scholar 

  • Ogawa H, Shinoda T, Cornelius F, Toyoshima C (2009) Crystal structure of the sodium-potassium pump (Na+, K + -ATPase) with bound potassium e ouabain. Proc Natl Acad Sci U S A 166:13742–13747

    Google Scholar 

  • Onken K (1996) Active and electrogenic absorption of Na + and Cl- across posterior gills of Eriocher sinensis: influence of short-term osmotic variations. J Exp Biol 199:901–910

    Google Scholar 

  • Onken H (1999) Active NaCl absorption across split gill lamellae of posterior gills of Chinese crabs (Eriocher sinensis) adapted to different salinities. Comp Biochem Physiol 123A:377–384

    Article  CAS  Google Scholar 

  • Onken H, McNamara JC (2002) Hyperosmoregulation in the red freshwater crab Dilocarcinus pagei (Brachyura, Trichodactylidae): structural and functional asymmetries of the posterior gills. J Exp Biol 205:167–175

    PubMed  Google Scholar 

  • Onken H, Putzenlechner M (1995) A V-ATPase drives active, electrogenic and Na + -independent Cl- absorption across the gills of Eriocheir sinensis. J Exp Biol 198:767–774

    Google Scholar 

  • Onken H, Riestenpatt S (1998) NaCl absorption across split gill lamellae of hyperregulating crabs: transport mechanisms and their regulation. Comp Biochem Physiol 119A:883–893

    Article  CAS  Google Scholar 

  • Onken H, Riestenpatt S (2002) Ion transport across posterior gills of hyperosmoregulating shore crabs (Carcinus maenas): amiloride blocks the cuticular Na+ conductance and induces current-noise. J Exp Biol 205:523–531

    PubMed  Google Scholar 

  • Onken H, Schobel A, Kraft J, Putzenlechner M (2000) Active NaCl absorption across split lamellae of posterior gills of the chinese crab Eriocheir sinensis: stimulation by eyestalk extract. J Exp Biol 203:1373–1381

    CAS  PubMed  Google Scholar 

  • Oot RA, Wilkens S (2012) Subunit interactions at the V1-Vo interface in yeast vacuolar ATPase. J Biol Chem 287:13396–13406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osteresch C, Bender T, Grond S, Zezschwitz P, Kunze B, Jansen R, Huss M, Wieczorek H (2012) The binding site of the V-ATPase inhibitor Apicularen is in the vicinity of those for Bafilomycin and Archazolid. J Biol Chem 287:31866–31876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oubaassine R, Weckring M, Kessler L, Breidert M, Roegel JC, Eftekhari P (2012) Insulin interacts directly with Na+/K+ATPase and protects from digoxin toxicity. Toxicology 299:1–9

    Google Scholar 

  • Palmgren MG, Nissen P (2011) P-Type ATPases. Annu Rev Biophys 40:243–266

    Article  CAS  PubMed  Google Scholar 

  • Pan LQ, Zhang LJ, Liu HY (2007) Effects of salinity and pH on ion-transport enzyme activities, survival and growth of Litopenaeus vannamei postlarvae. Aquaculture 273:711–720

    Article  CAS  Google Scholar 

  • Pan L, Li L, Zhang L (2010) Variations of ion-transport enzyme activities during early development of the shrimps Fenneropenaeus chinensis and Marsupenaeus japonicus. J Ocean Univ Chin 9:76–80

    Google Scholar 

  • Parekh A, Campbell AJM, Djouhri L, Fang X, Mcmullan S, Berry C, Acosta C, Lawson SN (2010) Immunostaining for the α3 isoform of the Na+/K + -ATPase is selective for functionally identified muscle spindle afferents in vivo. J Physiol 588:4131–4143

    Google Scholar 

  • Parrie L, Towle DW (2002) Induction of Na++K+-ATPase alpha subunit mRNA in branchial tissues of the American lobster Homarus americanus. J Integr Comp Biol 42:1291

    Google Scholar 

  • Patrick ML, Aimanova K, Sanders HR, Gill SS (2006) P-type Na+/K + -ATPase and V-type H + -ATPase expression patterns in the osmoregulatory organs of larval and adult mosquito Aedes aegypti. J Exp Biol 209:4638–4651

    Google Scholar 

  • Paulsen PA, Jurkowski W, Apostolov R, Lindahl E, Nissen P, Poulsen H (2013) The C-terminal cavity of the Na, K-ATPase analyzed by docking and electrophysiology. Mol Membr Biol 30:195–205

    Article  PubMed  Google Scholar 

  • Paunescu TG, da Silva N, Marshansky V, McKee M, Breton S, Brown D (2004) Expression of the 56-kDa B2 subunit isoform of the vacuolar Hþ-ATPase in proton-secreting cells of the kidney and epididymis. Am J Physiol 287:C149–C162

    Article  CAS  Google Scholar 

  • Pedersen PL, Amzel LM (1993) ATP synthases. Structure, reaction center, mechanism, e regulation of one nature’s most unique machines. J Biol Chem 268:9937–9940

    CAS  PubMed  Google Scholar 

  • Pedersen BP, Morth JP, Nissen P (2010) Structure determination using poorly diffracting membrane-protein crystals: the H + -ATPase and Na+, K + -ATPase case history. Acta Crystallogr 66D:309–313

    Google Scholar 

  • Pegg AE (2009) Mammalian polyamine metabolism and function. IUBMB Life 61:880–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pendeville H, Carpino N, Marine JC, Takahashi Y, Muller M, Martial JA, Cleveland JL (2001) The ornithine decarboxylase gene is essential for cell survival during early murine development. Mol Cell Biol 21:6549–6558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Péqueux A (1995) Osmotic regulation in crustaceans. J Crustac Biol 15:1–60

    Article  Google Scholar 

  • Péqueux A, Labras P, Cann-Moisan C, Coroff J, Sebert P (2002) Polyamines, indolamines, and catecholamines in gills and haemolymph of the euryhaline crab. Eriocheir sinensis effects of high pressure and salinity. Crustaceana 75:567–578

    Google Scholar 

  • Perry SF (1986) Carbon dioxide excretion in fishes. Can J Zool 64:565–572

    Article  Google Scholar 

  • Peterson GL, Hokin LE (1981) Molecular weight and stoichiometry of the sodium- and potassium- activated adenosine triphosphatase subunits. J Biol Chem 256:3751–3761

    CAS  PubMed  Google Scholar 

  • Peterson G, Ewing R, Conte F (1978) Membrane differentiation and de novo synthesis of the Na + K + -activated adenosine triphosphatase during development of Artemia salina nauplii. Dev Biol 67:90–98

    Google Scholar 

  • Petrushanko JY, Mitkevich VA, Anashkira AA, Klimanova EA, Dergousova EA, Lopina OD, Makarov AA (2014) Critical role of γ-phosphate in structural transition of Na, K-ATPase upon ATP binding. Sci Rep 4:5165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierre SV, Sottejeau Y, Gourbeau J, Sanchez G, Shidyak KA, Blanco VG (2008) Isoform-specificity of Na, K-ATPase-mediated ouabain signaling. Am J Physiol 294:F859–F866

    CAS  Google Scholar 

  • Pietrement C, Sun-Wada GH, Silva ND, McKee M, Marshansky V, Brown D, Futai M, Breton S (2006) Distinct expression patterns of different subunit isoforms of the V-ATPase in the rat epididymis. Biol Reprod 74:185–194

    Article  CAS  PubMed  Google Scholar 

  • Pinto MR, Lucena MN, Faleiros RO, Almeida EA, McNamara JC, Leone FA (2016) Effects of ammonia stress in the Amazon river shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae). Aquatic Toxicol 170:13–23.

    Google Scholar 

  • Post RL (1999) Active transport and pumps. Curr Top Membr 48:397–417

    Article  CAS  Google Scholar 

  • Post RL, Hegyvary C, Kume S (1972) Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J Biol Chem 247:6530–6540

    CAS  PubMed  Google Scholar 

  • Poulsen H, Morth P, Egebjerg J, Nissen P (2010a) Phosphorylation of the Na+, K + -ATPase and the H+, K + -ATPase. FEBS Lett 584:2589–2595

    Google Scholar 

  • Poulsen H, Khandelia H, Morth P, Bublitz M, Mouritsen OG, Egebjerg J, Nissen P (2010b) Neurological disease mutations compromise a C-terminal ion pathway in the Na1/K1-ATPase. Nature 467:99–102

    Article  CAS  PubMed  Google Scholar 

  • Poulsen H, Nissen P, Mouritsen OG, Khandelia H (2012) Protein kinase A (PKA) phosphorylation of Na/K-ATPase opens intracellular C-terminal water pathway leading to third Na-binding site in molecular dynamics simulations. J Biol Chem 287:15959–15965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68

    Article  CAS  PubMed  Google Scholar 

  • Pressley TA (1992) Ionic regulation of Na + -ATPase, K + -ATPase expression. Semin Nephrol 12:67–71

    Google Scholar 

  • Pressley TA, Duran MJ, Pierre SV (2005) Regions conferring isoform-specific function in the catalytic subunit of the Na, K-pump. Front Biosci 10:2018–2026

    Article  CAS  PubMed  Google Scholar 

  • Prosser CL (1973) Comparative animal physiology. WB Saunders, Philadelphia

    Google Scholar 

  • Purhonen P, Thomsen K, Maunsbach AB, Hebert H (2006) Association of renal Na, K-ATPase alpha-subunit with the beta- and gamma-subunits based on cryoelectron microscopy. J Membr Biol 214:139–146

    Article  CAS  PubMed  Google Scholar 

  • Quarfoth G, Ahmed K, Foster D (1978) Effects of polyamines on partial reactions of membrane (Na+K+)-ATPase. Biochim Biophys Acta 526:580–590

    Article  CAS  PubMed  Google Scholar 

  • Radzyukevich TL, Neumann JC, Rindler TN, Oshiro N, Goldhamer DJ, Lingrel JB, Heiny JA (2013) Tissue-specific role of the Na, K-ATPase α2 isozyme in skeletal muscle. J Biol Chem 288:1226–1237

    Article  CAS  PubMed  Google Scholar 

  • Randall D, Burggren W, French K (2000) Animal physiology – mechanisms and adaptations, 4th edn. WH Freeman, New York

    Google Scholar 

  • Rastogi VK, Girvin ME (1999) Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402:263–268

    Article  CAS  PubMed  Google Scholar 

  • Ratheal IAM, Virgin GK, Yu H, Roux B, Gatto C, Artiga P (2010) Selectivity of externally facing ion-binding sites in the Na/K pump to alkali metals and organic cations. Proc Natl Acad Sci U S A 107:18718–18723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Read GHL (1982) An ecophysiological study of the effects of changes in salinity and temperature on the distribution of Macrobrachium petersi (Hilgendorf) in the Keiskamma river and estuary. PhD thesis, Rhodes University

    Google Scholar 

  • Rebelo MF, Santos EA, Monserrat JM (1999) Ammonia exposure of Chasmagnathus granulata (Crustacea-Decapoda) Dana, 1851. Accumulation in haemolymph and effects on osmoregulation. Comp Biochem Physiol 122A:429–435

    Article  CAS  Google Scholar 

  • Rebelo MF, Rodriguez EM, Santos EA, Ansaldo M (2000) Histopathological changes in gills of the estuarine crab Chasmagnathus granulata (Crustacea, Decapoda) following after exposure to ammonia. Comp Biochem Physiol 125C:157–164

    Google Scholar 

  • Regnault M (1987) Nitrogen excretion in marine and freshwater crustacea. Biol Rev 62:1–24

    Article  Google Scholar 

  • Rice WJ, Young HS, Martin DW, Sachs JR, Stokes DL (2001) Structure of (Na+, K+)-ATPase at 11-angstrom resolution: comparison with Ca2+ -ATPase in E1 e E2 states. Biophys J 80:2187–2197

    Google Scholar 

  • Riestenpatt S, Onken H, Siebers D (1996) Active absorption of Na+ and Cl across the gill epithelium of the shore crab Carcinus maenas: voltage-clamp and ion-flux studies. J Exp Biol 199:1545–1554

    CAS  PubMed  Google Scholar 

  • Robinson JD, Leach CA, Robinson LJ (1986) Cation sites, spermine, e the reaction sequence of the (NA+K+)-dependent ATPase. Biochim Biophys Acta 856:536–544

    Article  CAS  PubMed  Google Scholar 

  • Romano N, Zeng C (2007) Ontogenetic changes in tolerance to acute ammonia exposure and associated histological gill alterations during early juvenile development of the blue swimmer crab, Portunus pelagicus. Aquaculture 266:246–254

    Google Scholar 

  • Romano N, Zeng C (2010) Survival, osmoregulation and ammonia-N excretion of blue swimmer crab Portunus pelagicus juveniles exposed to different ammonia-N and salinity combinations. Comp Biochem Physiol C Toxicol Pharmacol 151C:222–228

    Google Scholar 

  • Rubin EH, Ferrendelli JA (1977) Distribution and regulation of cyclic nucleotide levels in cerebellum, in vivo. J Neurochem 29:43–51

    Article  CAS  PubMed  Google Scholar 

  • Sáez AG, Lozano E, Zaldívar-Riverón A (2009) Evolutionary history of Na, K-ATPases and their osmoregulatory role. Genetica 136:479–490

    Article  PubMed  CAS  Google Scholar 

  • Salyer SA, Parks J, Barati MT, Lederer ED, Clark BJ, Klein JD, Khundmiri SJ (2013) Aldosterone regulates Na+, K+ ATPase activity in human renal proximal tubule cells through mineralocorticoid receptor. Biochim Biophys Acta 1833:2143–2152

    Google Scholar 

  • Sánchez-Rodriguéz JE, Khalili-Araghi F, Miranda P, Roux B, Holmgren M, Bezanilla F (2015) A structural rearrangement of the Na, K-ATPase traps ouabain within the external ion permeation pathway. J Mol Biol 427:1335–1344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sandtner W, Egwolf B, Khalili-Araghi F, Sánchez-Rodrígues JE, Roux B, Bezanilla F, Holmgren M (2011) Ouabain binding site in a functioning Na/K ATPase. J Biol Chem 286:38177–38183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos LCF, Belli NM, Augusto A, Masui DC, Leone FA, McNamara JC, Furriel RPM (2007) Gill (Na+, K+)-ATPase in diadromous, freshwater palaemonid shrimps: species-specific kinetic characteristics and α-subunit expression. Comp Biochem Physiol 148A:178–188

    Google Scholar 

  • Schack VR, Morth JP, Toustrup-Jensen MS, Anthonisen AN, Nissen P, Eersen JP, Vilsen B (2008) Identification e function of a cytoplasmic K+ site of the Na+, K + -ATPase. J Biol Chem 283:27982–27990

    Google Scholar 

  • Schaefer TL, Lingrel JB, Moseley AE, Vorhees CV, Williams MT (2011) Targeted mutations in the Na, K-ATPase alpha 2 isoform confer ouabain resistance and result in abnormal behavior in mice. Synapse 65:520–531

    Article  CAS  PubMed  Google Scholar 

  • Scheiner-Bobis G (2002) The sodium pump – its molecular properties and mechanics of ion transport. Eur J Biochem 269:2424–2433

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Nielsen K (1996) Fisiologia animal: Adaptação e Meio Ambiente, vol 1. Editora Santos, São Paulo

    Google Scholar 

  • Schubart CD, Diesel R (1998) Osmoregulatory capacities and penetration into terrestrial habitats: a comparative study of Jamaican crabs of the genus Armases Abele, 199 (Brachyura: Grapsidae: Sesarminae). Bul Mar Sci 6:743–752

    Google Scholar 

  • Schubart CD, Diesel R, Hedges SB (1998) Rapid evolution to terrestrial life in jamaican crabs. Nature 393:363–365

    Article  CAS  Google Scholar 

  • Scott C, Bissig G, Gruenberg J (2011) Duelling functions of the V-ATPase. EMBO J 30:4113–4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segall L, Daly SE, Boxenbaum N, Lane LK, Blostein R (2000) Distinct catalytic properties of the α 1, α 2 e α 3 isoforms of the rat (Na+, K+)-ATPase. Biophys J 78:78A

    Google Scholar 

  • Seiler N, Dezeure F (1990) Polyamine transport in mammalian cells. Int J Biochem 22:211–218

    Article  CAS  PubMed  Google Scholar 

  • Seneviratna D, Taylor HH (2006) Ontogeny of osmoregulation in embryos of intertidal crabs (Hemigrapsus sexdentatus and H. crenulatus, Grapsidae, Brachyura): putative involvement of the embryonic dorsal organ. J Exp Biol 209:1487–1501

    Article  CAS  PubMed  Google Scholar 

  • Sennoune SR, Bakunts K, Martinez GM (2004) Vacuolar H + -ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. Am J Physiol 286:C1433–C1452

    Google Scholar 

  • Seok JH, Kim JB, Hong JH, Sung JY, Hur GM, Lim K, Lee JH (1998) Regulation of Na, K-ATPase activity in renal basolateral membrane of 1-clip-1-kidney hypertensive rate. Biochem Mol Biol Int 46:667–672

    CAS  PubMed  Google Scholar 

  • Shetlar RE, Towle DW (1989) Electrogenic sodium-proton exchange in membrane vesicles from crab (Carcinus maenas) gill. Am J Physiol 257:R924–R931

    Google Scholar 

  • Shindo Y, Morishita K, Kotake E, Miura H, Carninci P, Kawai J, Hayashizaki Y, Hino A, Kanda T, Kusakabe Y (2011) FXYD6, a Na, K-ATPase regulator, is expressed in type II taste cells. Biosci Biotechnol Biochem 75:1061–1066

    Article  CAS  PubMed  Google Scholar 

  • Shinoda T, Ogawa H, Cornelius F, Toyoshima C (2009) Crystal structure of the sodium-potassium pump at 2.4 Å resolution. Nature 459:446–450

    Article  CAS  PubMed  Google Scholar 

  • Siebers D, Leweck K, Markus H, Winkler A (1982) Sodium regulation in the shore crab Carcinus maenas as related to ambient salinity. Mar Biol 69:37–43

    Article  CAS  Google Scholar 

  • Silva ECC, Masui DC, Furriel RPM, Mantelatto FLM, McNamara JC, Barrabin H, Leone FA, Scofano HM, Fontes CFL (2008) Regulation by the exogenous polyamine spermidine of Na, K-ATPase activity from the gills of the euryhaline swimming crab Callinectes danae (Brachyura, Portunidae). Comp Biochem Physiol 149B:622–629

    Google Scholar 

  • Silva ECC, Masui DC, Furriel RP, McNamara JC, Barrabin H, Scofano HM, Perales J, Teixeira-Ferreira A, Leone FA, Fontes CFL (2012) Identification of a crab gill FXYD2 protein and regulation of crab microsomal Na, K-ATPase activity by mammalian FXYD2 peptide. Biochim Biophys Acta 1818:2588–2597

    Article  CAS  PubMed  Google Scholar 

  • Skaggs HS, Henry RP (2002) Inhibition of carbonic anhydrase in the gills of two euryhaline crabs, Callinectes sapidus and Carcinus maenas by heavy metals. Comp Biochem Physiol 133C:605–612

    CAS  Google Scholar 

  • Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394–401

    Article  CAS  PubMed  Google Scholar 

  • Skou JC, Esmann M (1992) The Na, K-ATPase. J Bioenerg Biomembr 24:249–261

    CAS  PubMed  Google Scholar 

  • Slingerland M, Cerella C, Guchelaar HJ, Diederich M, Gelderblom H (2013) Cardiac glycosides in cancer therapy: from preclinical investigations towards clinical trials. Invest New Drugs 31:1087–1094

    Article  CAS  PubMed  Google Scholar 

  • Smith AN, Skaug J, Choate KA, Nayir A, Bakkaloglu A, Ozen S, Hulton SA, Sanjad SA, Al-Sabban EA, Lifton RP, Scherer SW, Karet FE (2000) Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat Genet 26:71–75

    Article  CAS  PubMed  Google Scholar 

  • Smith AN, Borthwick KJ, Karet FE (2002) Molecular cloning and characterization of novel tissue-specific isoforms of the human vacuolar V-ATPase C, G and d subunits, and their evaluation in autosomal recessive distal renal tubular acidosis. Gene 297:169–177

    Article  CAS  PubMed  Google Scholar 

  • Sorensen TML, Moller JV, Nissen P (2004) Phosphoryl transfer e calcium ion occlusion in the calcium pump. Science 304:1672–1675

    Article  CAS  PubMed  Google Scholar 

  • Sottejeau Y, Belliard A, Duran MJ, Pressley TA, Pierre SV (2010) Critical role of the isoform-specific region in R1-Na, K-ATPase trafficking and protein kinase C-dependent regulation. Biochemistry 49:3602–3610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern S, Borut A, Cohen D (1984) The effect of salinity and ion composition on oxygen consumption and nitrogen excretion of Macrobrachium rosenbergii (De Man). Comp Biochem Physiol 79A:271–274

    Article  CAS  Google Scholar 

  • Stronberg JO (1972) Cyathura polita (Crustacea, Isopoda), some embryological notes. Bull Mar Sci Gulf Carribb 22:463–483

    Google Scholar 

  • Sun-Wada GH, Wada Y (2010) Vacuolar-type proton pump ATPases: roles of subunit isoforms in physiology and pathology. Histol Histopathol 25:1611–1620

    CAS  PubMed  Google Scholar 

  • Susanto GN, Charmantier G (2000) Ontogeny of osmoregulation in the crayfish Astacus leptodactylus. Physiol Biochem Zool 73:169–176

    Google Scholar 

  • Susanto GN, Charmantier G (2001) Crayfish freshwater adaptation starts in eggs: ontogeny of osmoregulation in embryos of Astacus leptodactylus. J Exp Zool 289:433–440

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, He Y, Kashiwagi K, Murakami Y, Hayashi S, Igarashi K (1994) Antizyme protects against abnormal accumulation and toxicity of polyamines in ornithine decarboxylase-overproducing cells. Proc Natl Acad Sci U S A 91:8930–8934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790

    Article  CAS  PubMed  Google Scholar 

  • Tan CH, Choong KY (1981) Effect of hyperosmotic stress on hemolymph protein, muscle ninhydrin positive substances and free amino acids in Macrobrachium roserbergii (de Man). Comp Biochem Physiol 70A:485–489

    Article  CAS  Google Scholar 

  • Tashima Y, Hasegawa M, Mizunuma H (1978) Activation of (Na+K+)-adenosine triphosphatase by spermine. Biochem Biophys Res Commun 82:13–18

    Article  CAS  PubMed  Google Scholar 

  • Tassoni A, Antognoni F, Bagni N (1996) Polyamines binding to plasma membrane vesicles isolated from zucchini hypocotyls. Plant Physiol 110:817–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor HH, Seneviratna D (2005) Ontogeny of salinity tolerance and hyper osmoregulation by embryos of the intertidal crabs Hemigrapsus edwardsii and Hemigrapsus crenulatus (Decapoda, Grapsidae): survival of acute hyposaline exposure. Comp Biochem Physiol 140A:495–505

    Google Scholar 

  • Taylor HH, Taylor EW (1992) Decapod Crustacea. In: Harrison FW, Humas AG (eds) Microscopic anatomy of invertebrates, vol 10. Wiley-Liss, New York, pp 203–293

    Google Scholar 

  • Therien AG, Blostein R (2000) Mechanisms of sodium pump regulation. Am J Physiol 279:C541–C566

    CAS  Google Scholar 

  • Tidow H, Aperia A, Nissen P (2010) How are ion pumps and agrin signaling integrated? Trends Biochem Sci 35:653–659

    Article  CAS  PubMed  Google Scholar 

  • Toei M, Saum R, Forgac M (2010) Regulation and isoform function of the V-ATPases. Biochemistry 49:4715–4723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokhtaeva E, Clifford RJ, Kaplan JH, Sachs G, Vagin O (2012) Subunit isoform selectivity in assembly of Na, K-ATPase α-β heterodimers. J Biol Chem 287:26115–26125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toner M, Vaio G, McLaughlin A, McLaughlin S (1988) Adsorption of cations to phosphatidylinositol 4,5-bisphosphate. Biochemistry 27:7435–7443

    Article  CAS  PubMed  Google Scholar 

  • Toustrup-Jensen MS, Vilsen B (2005) Interaction between the catalytic site and the A-M3 linker stabilizes E2/E2P conformational states of Na+, K + -ATPase. J Biol Chem 280:10210–20218

    Google Scholar 

  • Toustrup-Jensen MS, Holm R, Einholm AP, Schack VR, Morth JP, Nissen P, Eersen JP, Vilsen B (2009) The C terminus of Na+, K + -ATPase controls Na + affinity on both sides of the membrane through Arg935. J Biol Chem 284:18715–18725

    Google Scholar 

  • Towle DW (1984) Regulatory functions of Na++K+-ATPase in marine and estuarine animals. In: Péqueux A, Gilles R, Bolis L (eds) Osmoregulation in estuarine and marine animals. Springer, Berlin, pp 157–170

    Chapter  Google Scholar 

  • Towle DW (1990) Sodium transport systems in gills. In: Kinne RKH (ed) Comparative aspects of sodium cotransport systems. Karger Publishing, Basel, pp 241–263

    Google Scholar 

  • Towle DW, Kays WT (1986) Basolateral localization of Na+, K + -ATPase in gill epithelium of two osmoregulating crabs, Callinectes sapidus and Carcinus maenas. J Exp Zool 239:311–318

    Google Scholar 

  • Towle DW, Weihrauch D (2001) Osmoregulation by gills of euryhaline crabs: molecular analysis of transporters. Am Zool 41:770–780

    CAS  Google Scholar 

  • Towle DW, Palmer GE, Harris JL (1976) Role of gill Na+- + K+-dependent ATPase in acclimation of blue crabs (Callinectes sapidus) to low salinity. J Exp Zool 196:315–321

    Article  CAS  Google Scholar 

  • Towle DW, Rushton ME, Heidysch D, Magnani JJ, Rose MJ, Amstutz A, Jordan MK, Shearer DW, Wu WS (1997) Sodium-proton antiporter in the euryhaline crab Carcinus maenas: molecular cloning, expression and tissue distribution. J Exp Biol 200:1003–1014

    CAS  PubMed  Google Scholar 

  • Towle DW, Paulsen RS, Weihrauch D, Kordylewski M, Salvador C, Lignot JH, Spanings-Pierrot C (2001) Na+K+-ATPase in gills of the blue crab Callinectes sapidus: cDNA sequencing and salinity related expression of α-subunit mRNA and protein. J Exp Biol 204:4005–4012

    CAS  PubMed  Google Scholar 

  • Towle DW, Henry RP, Terwilliger NB (2011) Microarray-detected changes in gene expression in gills of green crabs (Carcinus maenas) upon dilution of environmental salinity. Comp Biochem Physiol 6D:115–125

    CAS  Google Scholar 

  • Toyomura T, Murata Y, Yamamoto A (2003) From lysosomes to the plasma membrane – localization of vacuolar type H + -ATPase with the a3 isoform during osteoclast differentiation. J Biol Chem 248:22023–22030

    Google Scholar 

  • Toyoshima C, Cornelius F (2013) New crystal structures of PII-type ATPases: excitement continues. Struct Biol 23:507–514

    CAS  Google Scholar 

  • Toyoshima C, Mizutani T (2004) Crystal structure of the calcium pump with a bound ATP analogue. Nature 430:529–535

    Article  CAS  PubMed  Google Scholar 

  • Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6A resolution. Nature 405:647–655

    Article  CAS  PubMed  Google Scholar 

  • Toyoshima C, Nomura H, Tsuda T (2004) Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432:361–368

    Article  CAS  PubMed  Google Scholar 

  • Toyoshima C, Ryuta K, Flemming C (2011) First crystal structures of Na+, K + -ATPase: new light on the oldest ion pump. Structure 19:1732–1738

    Google Scholar 

  • Tresguerres M, Parks SK, Sabatini SE, Goss GG, Luquet CM (2008) Regulation of ion transport by pH and [HCO3 ] in isolated gills of the crab Neohelice (Chasmagnathus) granulata. Am J Physiol 294:R1033–R1043

    CAS  Google Scholar 

  • Tsai JR, Lin HC (2007) V-type H1-ATPase e Na+, K+ -ATPase in the gills of 13 euryhaline crabs during salinity acclimation. J Exp Biol 210:620–627

    Google Scholar 

  • Tsai JR, Lin HC (2014) Functional anatomy and ion regulatory mechanisms of the antennal gland in a semi-terrestrial crab, Ocypode stimpsoni. Biol Open 3:409–417

    Google Scholar 

  • Vedonato N, Gadsby DC (2010) The two C-terminal tyrosines stabilize occluded Na/K pump conformations containing Na or K ions. J Gen Physiol 136:163–182

    Google Scholar 

  • Vergamini FG, Pileggi LG, Mantelatto FL (2011) Genetic variability of the Amazon River prawn Macrobrachium amazonicum (Decapoda, Caridea, Palaemonidae). Contrib Zool 80:67–83

    Google Scholar 

  • Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP (2004) Renal vacuolar H+ -ATPase. Physiol Rev 84:1263–1314

    Google Scholar 

  • Wall SM, Fischer MP, Mehta P, Hassell KA, Park SJ (2001) Contribution of the Na+-K+-2Cl cotransporter NKCC1 to Cl secretion in rat OMCD. Am J Physiol 280:F913–F921

    CAS  Google Scholar 

  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Hiesinger PR (2013) The vesicular ATPase: a missing link between acidification and exocytosis. J Cell Biol 203:171–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Inoue T, Forgac M (2005) Subunit a of the yeast V-ATPase participates in binding of Bafilomycin. J Biol Chem 280:40481–40488

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang WN, Liu Y, Cai DX, Li JZ, Wang AL (2012a) Two types of ATPases from the Pacific white shrimp, Litopenaeus vannamei in response to environmental stress. Mol Biol Rep 39:6427–6438

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Zhuang P, Feng G, Zhang L, Huang X, Jia X (2012b) Osmotic and ionic regulation and Na+/K+ -ATPase, carbonic anhydrase activities in mature Chinese mitten crab, Eriocheir sinensis H. Milne Edwards, 1853 (decapoda, brachyura) exposed to different salinities. Crustaceana 85:1431–1447

    Google Scholar 

  • Wanson SA, Péqueux A, Roer RD (1984) Na+ regulation and Na+, K + -ATPase activity in the euryhaline fiddler crab Uca minax (La Conte). Comp Biochem Physiol 79A:673–678

    Google Scholar 

  • Watanabe S, Kusama-Eguchi K, Kobayashi H, Igarashi K (1991) Estimation of polyamine binding to macromolecules and ATP in bovine lymphocytes and rat liver. J Biol Chem 266:20803–20809

    CAS  PubMed  Google Scholar 

  • Watts SA, Lee KJ, Cline GB (1994) Elevated ornithine decarboxylase activity e polyamine levels during early development in the brine shrimp Artemia-franciscana. J Exp Zool 270:426–431

    Article  CAS  Google Scholar 

  • Watts SA, Yeh EW, Henry RP (1996) Hypoosmotic stimulation of ornithine decarboxylase activity in the brine shrimp Artemia franciscana. J Exp Zool 274:15–22

    Google Scholar 

  • Wehner F, Olsen H, Tinel H, Kinnesaffran E, Kinne RKH (2003) Cell volume regulation: osmolytes, osmolyte transport, and signal transduction. Rev Physiol Biochem Pharmacol 148:1–80

    CAS  PubMed  Google Scholar 

  • Weigand KM, Messchaert M, Swarts HGP, Russel FGM, Koenderink JB (2014) Alternating hemiplegia of childhood mutations have a differential effect on Na+, K + -ATPase activity and ouabain binding. Biochim Biophys Acta 1842:1010–1016

    Google Scholar 

  • Weihrauch D, Becker W, Postel U, Riestenpatt S, Siebers D (1998) Active excretion of ammonia across the gills of the shore crab Carcinus maenas and its relation to osmoregulatory ion uptake. J Comp Physiol 168B:364–376

    Article  Google Scholar 

  • Weihrauch D, Becker W, Postel U, Luck-Kopp S, Siebers D (1999) Potential of active excretion of ammonia in three different haline species of crabs. J Comp Physiol 169B:25–37

    Article  Google Scholar 

  • Weihrauch D, Ziegler A, Siebers D, Towle DW (2001) Molecular characterization of V-type H(+)-ATPase (B-subunit) in gills of euryhaline crabs and its physiological role in osmoregulatory ion uptake. J Exp Biol 204:25–37

    Google Scholar 

  • Weihrauch D, Ziegler A, Siebers D, Towle DW (2002) Active ammonia excretion across the gills of the green shore crab Carcinus maenas: participation of Na(+)/K(+)-ATPase, V-type H(+)-ATPase and functional microtubules. J Exp Biol 205:2765–2775

    Google Scholar 

  • Weihrauch D, McNamara JC, Towle DW, Onken H (2004a) Ion-motive ATPases and active, transbranchial NaCl uptake in the red freshwater crab, Dilocarcinus pagei (Decapoda, Trichodactylidae). J Exp Biol 207:4623–4631

    Article  CAS  PubMed  Google Scholar 

  • Weihrauch D, Morris S, Towle DW (2004b) Ammonia excretion in aquatic terrestrial crabs. J Exp Biol 207:4491–4504

    Article  CAS  PubMed  Google Scholar 

  • Weihrauch D, Wilkie MP, Walsh PJ (2009) Ammonia and urea transporters in gills of fish and aquatic crustaceans. J Exp Biol 212:1716–1730

    Article  CAS  PubMed  Google Scholar 

  • Weiner ID, Hamm LL (2007) Molecular mechanisms of renal ammonia transport. Annu Rev Physiol 69:317–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welcomme L, Devos P (1988) Cytochrome c oxidase and Na+-K+ ATPase activities in the anterior and posterior gills of the shore crab Carcinus maenas L. after adaptation to various salinities. Comp Biochem Physiol 89B:339–341

    CAS  Google Scholar 

  • Wengert M, Ribeiro MC, Abreu TP, Coutinho-Silva R, Leão-Ferreira LR, Pinheiro AAS, Caruso-Neves C (2013) Protein kinase C-mediated ATP stimulation of Na + -ATPase activity in LLC-PK1cells involves a P2Y2 and/or P2Y4 receptor. Arch Biochem Biophys 535:136–142

    Google Scholar 

  • Wild GE, Searles LE, Koski KG, Drozdowski LA, Begum-Hasan J, Thomson ABR (2007) Oral polyamine administration modifies the ontogeny of hexose transporter gene expression in the postnatal rat intestine. Am J Physiol 293:G453–G460

    CAS  Google Scholar 

  • Wilder MN, Huong DTT, Atmomarsono M, Tran TTH, Phu TQ, Yang WJ (2000) Characterization of Na/K-ATPase in Macrobrachium rosenbergii and the effects of changing salinity on enzymatic activity. Comp Biochem Physiol 125A:377–388

    Article  CAS  Google Scholar 

  • Wilder MN, Huong DTT, Okuno A, Atmomarsono M, Yang WJ (2001) Ouabain sensitive Na/K-ATPase activity increases during embryogenesis in the giant freshwater prawn Macrobrachium rosenbergii. Fish Sci 67:182–184

    Google Scholar 

  • Wilkie MP (1997) Mechanisms of ammonia excretion across fish gills. Comp Biochem Physiol 118A:39–50

    Article  CAS  Google Scholar 

  • Williams K (1997) Interactions of polyamines with ion channels. Biochem J 325:289–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler A (1986) The role of the transbranchial potential difference in hyperosmotic regulation of the shore crab Carcinus maenas. Helgoländer Meeresun 40:161–175

    Article  Google Scholar 

  • Yang WK, Kang CK, Chen TY, Chang WB, Lee TH (2011) Salinity-dependent expression of the branchial Na+/K+/2Clcotransporter and Na+/K+-ATPase in the sailfin molly correlates with hypoosmoregulatory endurance. J Comp Physiol 181B:953–964

    Article  CAS  Google Scholar 

  • Yaragatupalli S, Olivera JF, Gatto C, Artigas P (2009) Altered Na+ transport after an intracellular α-subunit deletion reveals strict external sequential release of Na+ from the Na/K pump. Proc Natl Acad Sci 106:15507–15512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yatime L, Laursen M, Morth JP, Esmann M, Nissen P, Fedesova NU (2011) Structural insights into the high affinity binding of cardiotonic steroids to the Na+, K + -ATPase. J Struct Biol 174:296–306

    Google Scholar 

  • Yoneda JS, Rigos CF, Ciancaglini P (2013) Addition of subunit c, K+ ions, and lipid restores the thermal stability of solubilized Na, K-ATPase. Arch Biochem Biophys 530:93–100

    Google Scholar 

  • Young-Lai WW, Charmantier-Daures M, Charmantier G (1991) Effect of ammonia on survival and osmoregulation in different life stages of the lobster Homarus americanus. Mar Biol 110:293–300

    Article  CAS  Google Scholar 

  • Yu H, Ratheal IM, Artiga P, Rouxi B (2011) Protonation of key acidic residues is critical for the K-selectivity of the Na/K pump. Nat Struct Mol Biol 18:1159–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanders IP (1980) Regulation of blood ions in Carcinus maenas (L.). Comp Biochem Physiol 65A:97–108

    Article  CAS  Google Scholar 

  • Zare S, Greenaway P (1998) The effect of moulting and sodium depletion on sodium transport and the activities of Na + K + -ATPase, and V-ATPase in the freshwater crayfish Cherax destructor (Crustacea: Parastacidae). Comp Biochem Physiol 119A:739–745

    Google Scholar 

  • Zeiske W, Onken H, Schwarz H-J, Graszynski K (1992) Invertebrate epithelial Na+ channels: amiloride-induced current-noise in crab gill. Biochim Biophys Acta 1105:245–252

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Koh X, Hua F, Li G, Larrick JW, Bian JS (2011) Cardio protection induced by Na1/K1-ATPase activation involves extracellular signal-regulated kinase 1/2 and phosphoinositide 3-kinase/Akt pathway. Cardiovasc Res 89:51–59

    Article  CAS  PubMed  Google Scholar 

  • Zhuo M, Hu Y, Schultz C, Kandel ER, Hawkins RD (1994) Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation. Nature 368:635–639

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco A. Leone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leone, F.A., Lucena, M.N., Garçon, D.P., Pinto, M.R., McNamara, J.C. (2017). Gill Ion Transport ATPases and Ammonia Excretion in Aquatic Crustaceans. In: Weihrauch, D., O’Donnell, M. (eds) Acid-Base Balance and Nitrogen Excretion in Invertebrates. Springer, Cham. https://doi.org/10.1007/978-3-319-39617-0_3

Download citation

Publish with us

Policies and ethics