CTPATH: A Real World System to Enable Green Transportation by Optimizing Environmentaly Friendly Routing Paths

  • Christian Cintrano
  • Daniel H. Stolfi
  • Jamal Toutouh
  • Francisco ChicanoEmail author
  • Enrique Alba
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9704)


Road transportation is becoming a major concern in modern cities. The growth of the number of vehicles is provoking an important increment of pollution and greenhouse gas emissions generated by road traffic. In this paper, we present CTPATH, an innovative smart mobility software system that offers efficient paths to drivers in terms of travel time and greenhouse gas emissions. In order to obtain accurate results, CTPATH computes these paths taking into account the layout and habits in the city and real-time road traffic data. It offers customized paths to drivers (including personal profiles) in a distributed and intelligent way so as to consider the whole city situation.


Smart mobility Green transportation Bi-objective shortest path 


  1. 1.
    Abdul-Hak, M., Bazzi, Y., Cordes, O., Alholou, N., Alamir, M.: Dynamic eco-routing methodology using petri net. In: SAE Technical Papers, vol. 2, April 2013Google Scholar
  2. 2.
    Cao, Z., Guo, H., Zhang, J., Niyato, D., Fastenrath, U.: Finding the shortest path in stochastic vehicle routing: a cardinality minimization approach. IEEE Trans. Intell. Transp. Syst. PP(99), 1–15 (2015)Google Scholar
  3. 3.
    Chen, H., Gao, Z., Yang, Y., Qiu, X.: An improved approach for route planning in urban traffic network. J. Comput. Inf. Syst. 9(7), 2917–2924 (2013)Google Scholar
  4. 4.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Duque, D., Lozano, L., Medaglia, A.L.: An exact method for the biobjective shortest path problem for large-scale road networks. Eur. J. Oper. Res. 242(3), 788–797 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ehrgott, M., Gandibleux, X.: Multi-objective combinatorial optimization. In: Al-Mezel, S.A.R., Al-Solamy, F.R.M., Ansari, Q.H. (eds.) Fixed Point Theory, Variational Analysis, and Optimization, pp. 307–341. CRC Press, Boca Raton (2014)Google Scholar
  7. 7.
    Erb, S., Kobitzsch, M., Sanders, P.: Parallel bi-objective shortest paths using weight-balanced b-trees with bulk updates. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 111–122. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Ghoseiri, K., Nadjari, B.: An ant colony optimization algorithm for the bi-objective shortest path problem. Appl. Soft Comput. 10(4), 1237–1246 (2010)CrossRefGoogle Scholar
  9. 9.
    Hansen, P.: Bicriterion path problems. In: Gal, T., Fandel, G. (eds.) Multiple Criteria Decision Making Theory and Application. LNEMS, vol. 177, pp. 109–127. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  10. 10.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRefGoogle Scholar
  11. 11.
    Hausberger, S., Rexeis, M., Zallinger, M., Luz, R.: Emission Factors from the Model PHEM for the HBEFA Version 3. Technical report I (2009)Google Scholar
  12. 12.
    Jamalluddin, M.H., Jaafar, M.A., Amran, M.I., Ainul, M.S., Hamid, A., Mansor, Z.M., Nopiah, Z.M.: Minimizing travel claims cost with minimal-spanning tree model. In: Proceeding of the 3rd International Conference on Mathematical Sciences, vol. 1602, pp. 541–545. AIP Publishing, June 2014Google Scholar
  13. 13.
    Jiang, B., Xu, X., Yang, C., Li, R., Terano, T.: Solving road-network congestion problems by a multi-objective optimization algorithm with brownian agent model. In: Corchado, J.M., Bajo, J., Kozlak, J., Pawlewski, P., Molina, J.M., Julian, V., Silveira, R.A., Unland, R., Giroux, S. (eds.) PAAMS 2013. CCIS, vol. 365, pp. 36–48. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of SUMO - Simulation of Urban MObility. Int. J. Adv. Syst. Meas. 5(3&4), 128–138 (2012)Google Scholar
  15. 15.
    Picone, M., Busanelli, S., Amoretti, M., Zanichelli, F., Ferrari, G.: Advanced Technologies for Intelligent Transportation Systems, vol. 139. Springer, Heidelberg (2015)Google Scholar
  16. 16.
    Serafini, P.: Some considerations about computational complexity for multi objective combinatorial problems. In: Jahn, J., Krabs, W. (eds.) Recent Advances and Historical Development of Vector Optimization. LNEMS, vol. 294, pp. 222–232. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  17. 17.
    Tatomir, B., Rothkrantz, L.J.M., Suson, A.C.: Travel time prediction for dynamic routing using ant based control. In: Proceedings of the 2009 Winter Simulation Conference (WSC), pp. 1069–1078. IEEE, December 2009Google Scholar
  18. 18.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Intoduction to Algorithms, 3rd edn. MIT Press, Massachusetts (2009)zbMATHGoogle Scholar
  19. 19.
    Ulungu, E., Teghem, J.: Application of the two phases method to solve the bi-objective knapsack problem. Technical report, FacultePolytechniquedeMons, Belgium (1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christian Cintrano
    • 1
  • Daniel H. Stolfi
    • 1
  • Jamal Toutouh
    • 1
  • Francisco Chicano
    • 1
    Email author
  • Enrique Alba
    • 1
  1. 1.Departamento de Lenguajes y Ciencias de la ComputaciónUniversity of MálagaMálagaSpain

Personalised recommendations