Advertisement

Mixed Integer Linear Programming Formulation for the Taxi Sharing Problem

  • Houssem E. Ben-Smida
  • Saoussen Krichen
  • Francisco ChicanoEmail author
  • Enrique Alba
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9704)

Abstract

Given a group of people traveling from the same origin to multiple destinations, the Taxi Sharing Problem consists in assigning taxis to each person such that the total cost spent by the group of people is minimized. This problem arises in the context of Smart Mobility, where the resources of a city must be optimized to save costs and pollution while the mobility services are improved for the citizens. We propose a mixed integer linear programming formulation as an accurate way to solve the problem of taxi sharing. We empirically analyze our formulation solving different real-like instances of the problem with 9 to 69 people.

Keywords

Taxi Sharing Problem Mixed Integer Linear Programming Smart Mobility Smart City 

References

  1. 1.
    Achuthan, N.R., Caccetta, L.: Integer linear programming formulation for a vehicle routing problem. Eu. J. Oper. Res. 52, 86–89 (1991)CrossRefzbMATHGoogle Scholar
  2. 2.
    Chevrier, R., Liefooghe, A., Jourdan, L., Dhaenens, C.: Solving a dial-a-ride problem with a hybrid evolutionary multi-objective approach: application to demand responsive transport. Appl. Soft Comput. 12(4), 1247–1258 (2012)CrossRefGoogle Scholar
  3. 3.
    Cordeau, J.F., Laporte, G.: A tabu search heuristic for the static multi-vehicle dial-a-ride problem. Transp. Res. Part B Methodol. 37(6), 579–594 (2003)CrossRefGoogle Scholar
  4. 4.
    Deakin, M., Waer, H.A.: From intelligent to smart cities. Intell. Build. Int. 3(3), 133–139 (2011)CrossRefGoogle Scholar
  5. 5.
    DeLoach, S.B., Tiemann, T.K.: Not driving alone? American commuting in the twenty-first century. Transportation 39(3), 521–537 (2011)CrossRefGoogle Scholar
  6. 6.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd edn. Springer, Heidelberg (2015)CrossRefzbMATHGoogle Scholar
  7. 7.
    Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems. SIAM J. Comput. 5(4), 691–703 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fellows, N., Pitfield, D.: An economic and operational evaluation of urban car-sharing. Transp. Res. Part D Transp. Environ. 5(1), 1–10 (2000)CrossRefGoogle Scholar
  9. 9.
    Fuhs, C., Obenberger, J.: Development of high-occupancy vehicle facilities: review of national trends. Transp. Res. Rec. J. Transp. Res. Board 1781, 1–9 (2002)CrossRefGoogle Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H Freeman and Company, New York (1979)zbMATHGoogle Scholar
  11. 11.
    Hartman, I.B.A., Keren, D., Dbai, A.A., Cohen, E., Knapen, L., Janssens, D., et al.: Theory and practice in large carpooling problems. Procedia Comput. Sci. 32, 339–347 (2014)CrossRefGoogle Scholar
  12. 12.
    Hopcroft, J.E., Karp, R.M.: A n5/2 algorithm for maximum matchings in bipartite. In: 12th Annual Symposium on Switching and Automata Theory, pp. 122–125, October 1971Google Scholar
  13. 13.
    Hosni, H., Farhat, N., Nimer, R., Alawieh, N., Masri, C., Saroum, M., Artail, H., NaoumSawaya, J.: Solving a dial-a-ride problem with a hybrid evolutionary multi-objective approach: application to demand responsive transport. In: 20th International Conference on Software, Telecommunications and Computer Networks, pp. 1–7 (2012)Google Scholar
  14. 14.
    Knapen, L., Hartman, I.B.A., Keren, D., Cho, S., Bellemans, T., Janssens, D., Wets, G., et al.: Scalability issues in optimal assignment for carpooling. J. Comput. Syst. Sci. 81(3), 568–584 (2015)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kulkarni, R.V., Bhave, P.R.: Integer programming formulations of vehicle routing problems. Eur. J. Oper. Res. 20, 58–67 (1985)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lin, Y., Li, W., Qiu, F., Xu, H.: Research on optimization of vehicle routing problem for ride-sharing taxi. Procedia Soc. Behav. Sci. 43, 494–502 (2012)CrossRefGoogle Scholar
  17. 17.
    Ma, S., Zheng, Y., Wolfson, O.: T-share: a large-scale dynamic taxi ridesharing service. In: 2013 IEEE 29th International Conference on Data Engineering (ICDE), pp. 410–421, April 2013Google Scholar
  18. 18.
    Massobrio, R., Fagúndez, G., Nesmachnow, S.: A parallel micro evolutionary algorithm for taxi sharing optimization. In: VII ALIO/EURO Workshop on Applied Combinatorial Optimization, Montevideo, Uruguay (2014)Google Scholar
  19. 19.
    Tao, C., Chen, C.: Heuristic algorithms for the dynamic taxipooling problem based on intelligent transportation system technologies. In: Fourth International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2007, vol. 3, pp. 590–595 (2007)Google Scholar
  20. 20.
    Yan, S., Chen, C.Y.: A model and a solution algorithm for the car pooling problem with pre-matching information. Comput. Ind. Eng. 61(3), 512–524 (2011)CrossRefGoogle Scholar
  21. 21.
    Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Houssem E. Ben-Smida
    • 1
  • Saoussen Krichen
    • 1
  • Francisco Chicano
    • 2
    Email author
  • Enrique Alba
    • 2
  1. 1.LARODECUniversity of TunisiaTunisTunisia
  2. 2.Dept. de Lenguajes y Ciencias de la ComputaciónUniversity of MálagaMálagaSpain

Personalised recommendations