Building Pedagogical Models by Formal Concept Analysis

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9684)

Abstract

The Pedagogical Model is one of the main components of an Intelligent Tutoring System. It is exploited to select a suitable action (e.g., feedback, hint) that the intelligent tutor provides to the learner in order to react to her interaction with the system. Such selection depends on the implemented pedagogical strategy and, typically, takes care of several aspects such as correctness and delay of the learner’s response, learner’s profile, context and so on. The main idea of this paper is to exploit Formal Concept Analysis to automatically learn pedagogical models from data representing human tutoring behaviours. The paper describes the proposed approach by applying it to an early case study.

Keywords

Intelligent tutoring systems Pedagogical model Formal concept analysis Conceptual scaling Association rule mining 

References

  1. 1.
    Chi, M., VanLehn, K., Litman, D.: Do micro-level tutorial decisions matter: applying reinforcement learning to induce pedagogical tutorial tactics. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010, Part I. LNCS, vol. 6094, pp. 224–234. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    De Maio, C., Fenza, G., Loia, V., Senatore, S.: Hierarchical web resources retrieval by exploiting fuzzy formal concept analysis. Inf. Process. Manage. 48(3), 399–418 (2012)CrossRefGoogle Scholar
  3. 3.
    El-Sheikh, E., Sticklen, J.: A framework for developing intelligent tutoring systems incorporating reusability. In: Moonis, A., Mira, J., de Pobil, A.P. (eds.) IEA/AIE 1998. LNCS, vol. 1415, pp. 558–567. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer Science & Business Media, New York (2012)MATHGoogle Scholar
  5. 5.
    Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14(2–3), 189–216 (2002)CrossRefMATHGoogle Scholar
  6. 6.
    Paiva, R.O.A., Bittencourt Santa Pinto, I.I., da Silva, A.P., Isotani, S., Jaques, P.: A systematic approach for providing personalized pedagogical recommendations based on educational data mining. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds.) ITS 2014. LNCS, vol. 8474, pp. 362–367. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. 7.
    Rivers, K., Koedinger, K.R.: Automating hint generation with solution space path construction. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds.) ITS 2014. LNCS, vol. 8474, pp. 329–339. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. 8.
    Sottilare, R.A.: Fundamentals of adaptive intelligent tutoring systems for self-regulated learning. Technical report, DTIC Document (2015)Google Scholar
  9. 9.
    Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Intelligent structuring and reducing of association rules with formal concept analysis. In: Baader, F., Brewka, G., Eiter, T. (eds.) KI 2001. LNCS (LNAI), vol. 2174, pp. 335–350. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Vanlehn, K.: The behavior of tutoring systems. Int. J. Artif. Intell. Educ. 16(3), 227–265 (2006)Google Scholar
  11. 11.
    Yevtushenko, S.A.: System of data analysis concept explorer. In: Proceedings of the 7th National Conference on Artificial Intelligence KII, vol. 2000 (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Management and Innovation SystemsUniversity of SalernoFiscianoItaly

Personalised recommendations