Estimating Individual Differences for Student Modeling in Intelligent Tutors from Reading and Pretest Data

  • Michael Eagle
  • Albert Corbett
  • John Stamper
  • Bruce M. McLaren
  • Angela Wagner
  • Benjamin MacLaren
  • Aaron Mitchell
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9684)


Past studies have shown that Bayesian Knowledge Tracing (BKT) can predict student performance and implement Cognitive Mastery successfully. Standard BKT individualizes parameter estimates for skills, also referred to as knowledge components (KCs), but not for students. Studies deriving individual student parameters from the data logs of student tutor performance have shown improvements to the standard BKT model fits, and result in different practice recommendations for students. This study investigates whether individual student parameters, specifically individual difference weights (IDWs) [1], can be derived from student activities prior to tutor use. We find that student performance measures in reading instructional text and in a conceptual knowledge pretest can be employed to predict IDWs. Further, we find that a model incorporating these predicted IDWs performs well, in terms of model fit and learning efficiency, when compared to a standard BKT model and a model with best-fitting IDWs derived from tutor performance.


BKT Genetics Machine learning Student modeling 



This research was supported by the National Science Foundation under the grant “Knowing What Students Know: Using Education Data Mining to Predict Robust STEM Learning”, award number DRL1420609.


  1. 1.
    Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Model. User-Adap. Inter. 4, 253–278 (1995)CrossRefGoogle Scholar
  2. 2.
    Mayo, M., Mitrovic, A.: Optimising ITS behaviour with Bayesian networks and decision theory. Int. J. Artif. Intell. Educ. 12, 124–153 (2001)Google Scholar
  3. 3.
    Shute, V.: Smart: student modeling approach for responsive tutoring. User Model. User-Adap. Inter. 5(1), 1–44 (1995)CrossRefGoogle Scholar
  4. 4.
    Ganeshan, R., Johnson, W.L., Shaw, E., Wood, B.P.: Tutoring diagnostic problem solving. In: Gauthier, G., Frasson, C., VanLehn, K. (eds.) ITS 2000. LNCS, vol. 1839, pp. 33–42. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Conati, C., Gertner, A., VanLehn, K.: Using Bayesian networks to manage uncertainty in student modeling. User Model. User-Adap. Inter. 12, 371–417 (2002)CrossRefMATHGoogle Scholar
  6. 6.
    Corbett, A.T., MacLaren, B., Kauffman, L., Wagner, A., Jones, E.A.: Cognitive tutor for genetics problem solving: learning gains and student modeling. J. Educ. Comput. Res. 42(2), 219–239 (2010)CrossRefGoogle Scholar
  7. 7.
    Gong, Y., Beck, J., Heffernan, N.: Comparing knowledge tracing and performance factor analysis by using multiple model fitting procedures. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010, Part I. LNCS, vol. 6094, pp. 35–44. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Koedinger, K., Corbett, A., Perfetti, C.: The Knowledge-Learning-Instruction (KLI) framework: bridging the science-practice chasm to enhance robust student learning. Cogn. Sci. 36(5), 757–798 (2012)CrossRefGoogle Scholar
  9. 9.
    Lee, J., Brunskill, E.: The impact of individualizing student models on necessary practice opportunities. In: Yacef, K., Zaiane, O., Hershkovitz, A., Yudelson, M., Stamper, J. (eds.) EDM 2012 Proceedings of the 5th International Conference on International Educational Data Mining Society, pp. 118–125 (2012)Google Scholar
  10. 10.
    Pardos, Z., Heffernan, N.: Modeling individualization in a Bayesian networks implementation of knowledge tracing. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 255–266. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Yudelson, M.V., Koedinger, K.R., Gordon, G.J.: Individualized Bayesian knowledge tracing models. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS, vol. 7926, pp. 171–180. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Pirolli, P., Wilson, M.: A theory of the measurement of knowledge content, access, and learning. Psychol. Rev. 105(1), 58–82 (1998)CrossRefGoogle Scholar
  13. 13.
    Cen, H., Koedinger, K.R., Junker, B.: Comparing two IRT models for conjunctive skills. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 796–798. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Pavlik, Jr., P.I., Yudelson, M., Koedinger, K.R.: Using contextual factors analysis to explain transfer of least common multiple skills. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS, vol. 6738, pp. 256–263. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Harvey, L., Anderson, J.: Transfer of declarative knowledge in complex information processing domains. Hum.-Comput. Inter. 11(1), 69–96 (1996)CrossRefGoogle Scholar
  16. 16.
    Zwann, R., Singer, M.: Text comprehension. In: Graesser, A., Gernsbacher, M., Goldman, S. (eds.) Handbook of Discourse Processes, pp. 83–121. Erlbaum, Mahwah (2003)Google Scholar
  17. 17.
    Arroyo, I., Beck, J.E., Park Woolf, B., Beal, C.R., Schultz, K.: Macroadapting animalwatch to gender and cognitive differences with respect to hint interactivity and symbolism. In: Gauthier, G., VanLehn, K., Frasson, C. (eds.) ITS 2000. LNCS, vol. 1839, pp. 574–583. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Baker, R.S., Corbett, A.T., Aleven, V.: More accurate student modeling through contextual estimation of slip and guess probabilities in bayesian knowledge tracing. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 406–415. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Koedinger, K.R., Stamper, J.C., McLaughlin, E.A., Nixon, T.: Using data-driven discovery of better student models to improve student learning. In: Lane, H., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS, vol. 7926, pp. 421–430. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Michael Eagle
    • 1
  • Albert Corbett
    • 1
  • John Stamper
    • 1
  • Bruce M. McLaren
    • 1
  • Angela Wagner
    • 1
  • Benjamin MacLaren
    • 1
  • Aaron Mitchell
    • 2
  1. 1.Human-Computer Interaction InstituteCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Biological SciencesCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations