Advertisement

Cellular Therapies for Wiskott-Aldrich Syndrome

  • Christian J. Braun
  • Christoph KleinEmail author
Chapter

Abstract

Wiskott-Aldrich syndrome (WAS) is an X-linked inherited rare disease caused by mutations of the WAS gene and affecting various subsets of the hematopoietic system. Affected patients experience severe bleedings, autoimmunity, immunodeficiency, and an increased risk of hematopoietic malignancies. Since several decades, patients with WAS have been treated successfully using allogeneic hematopoietic stem cell transplantation – this procedure may however be associated with significant morbidity as well as mortality, in particular in case of HLA-disparity. Hematopoietic stem cell gene therapy has been developed as an alternative, but oncogene activation secondary to insertional mutagenesis can lead to oncogenesis. More recent therapeutic approaches include the use of self-inactivating lentiviral vectors, promising a better safety-to-risk ratio. Therapeutic efficacy and safety are currently being assessed. New methods of genomic engineering employing zinc finger nucleases, TALENs, and CRISPR-Cas as tools may offer new perspectives to site-specific genomic repair of disease-causing mutations.

Keywords

Acute Myeloid Leukemia Hematopoietic Stem Cell Transplantation Chronic Granulomatous Disease Actin Polymerization Preimplantation Genetic Diagnosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aiuti A, Biasco L, Scaramuzza S et al (2013) Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 341:1233151. doi: 10.1126/science.1233151 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Aldrich RA, Steinberg AG, Campbell DC (1954) Pedigree demonstrating a sex-linked recessive condition characterized by draining ears, eczematoid dermatitis and bloody diarrhea. Pediatrics 13:133–139PubMedGoogle Scholar
  3. 3.
    Avecilla ST, Hattori K, Heissig B et al (2004) Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10:64–71. doi: 10.1038/nm973 CrossRefPubMedGoogle Scholar
  4. 4.
    Avedillo Díez I, Zychlinski D, Coci EG et al (2011) Development of novel efficient SIN vectors with improved safety features for Wiskott-Aldrich syndrome stem cell based gene therapy. Mol Pharm 8:1525–1537. doi: 10.1021/mp200132u CrossRefPubMedGoogle Scholar
  5. 5.
    Biyasheva A, Svitkina T, Kunda P et al (2004) Cascade pathway of filopodia formation downstream of SCAR. J Cell Sci 117:837–848. doi: 10.1242/jcs.00921 CrossRefPubMedGoogle Scholar
  6. 6.
    Blanchoin L, Amann KJ, Higgs HN et al (2000) Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 404:1007–1011. doi: 10.1038/35010008 CrossRefPubMedGoogle Scholar
  7. 7.
    Boch J (2011) TALEs of genome targeting. Nat Biotechnol 29:135–136. doi: 10.1038/nbt.1767 CrossRefPubMedGoogle Scholar
  8. 8.
    Boonyawat B, Dhanraj S, Al Abbas F et al (2013) Combined de-novo mutation and non-random X-chromosome inactivation causing Wiskott-Aldrich syndrome in a female with thrombocytopenia. J Clin Immunol 33:1150–1155. doi: 10.1007/s10875-013-9927-9 CrossRefPubMedGoogle Scholar
  9. 9.
    Bouma G, Burns SO, Thrasher AJ (2009) Wiskott-Aldrich Syndrome: immunodeficiency resulting from defective cell migration and impaired immunostimulatory activation. Immunobiology 214:778–790. doi: 10.1016/j.imbio.2009.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Boztug K, Dewey RA, Klein C (2006) Development of hematopoietic stem cell gene therapy for Wiskott-Aldrich syndrome. Curr Opin Mol 8(5):390–395Google Scholar
  11. 11.
    Boztug K, Schmidt M, Schwarzer A et al (2010) Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Engl J Med 363:1918–1927. doi: 10.1056/NEJMoa1003548 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Braun CJ, Witzel M, Paruzynski A, Boztug K (2014a) Gene therapy for Wiskott-Aldrich syndrome—long-term reconstitution and clinical benefits, but increased risk for leukemogenesis. Rare 2(1):e947749Google Scholar
  13. 13.
    Braun CJ, Boztug K, Paruzynski A et al (2014) Gene therapy for Wiskott-Aldrich syndrome – long-term efficacy and genotoxicity. Sci Transl Med 6:227ra33. doi: 10.1126/scitranslmed.3007280 CrossRefPubMedGoogle Scholar
  14. 14.
    Buchbinder D, Nugent DJ, Fillipovich AH (2014) Wiskott-Aldrich syndrome: diagnosis, current management, and emerging treatments. Appl Clin Genet 7:55–66. doi: 10.2147/TACG.S58444 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Burns S, Cory GO, Vainchenker W, Thrasher AJ (2004) Mechanisms of WASp-mediated hematologic and immunologic disease. Blood 104:3454–3462. doi: 10.1182/blood-2004-04-1678 CrossRefPubMedGoogle Scholar
  16. 16.
    Calle Y, Antón IM, Thrasher AJ, Jones GE (2008) WASP and WIP regulate podosomes in migrating leukocytes. J Microsc 231:494–505. doi: 10.1111/j.1365-2818.2008.02062.x CrossRefPubMedGoogle Scholar
  17. 17.
    Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782. doi: 10.1534/genetics.111.131433 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Catucci M, Castiello MC, Pala F et al (2012) Autoimmunity in wiskott-Aldrich syndrome: an unsolved enigma. Front Immunol 3:209. doi: 10.3389/fimmu.2012.00209 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82. doi: 10.1093/nar/gkr218 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761. doi: 10.1534/genetics.110.120717 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. doi: 10.1126/science.1231143 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Davidson RN, Wall RA (2001) Prevention and management of infections in patients without a spleen. Clin Microbiol Infect. doi: 10.1046/j.1198-743x.2001.00355.x PubMedGoogle Scholar
  23. 23.
    Davis BR, Dicola MJ, Prokopishyn NL et al (2008) Unprecedented diversity of genotypic revertants in lymphocytes of a patient with Wiskott-Aldrich syndrome. Blood 111:5064–5067. doi: 10.1182/blood-2007-06-095299 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Derry JM, Ochs HD, Francke U (1994) Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell 79:following 922. doi:  10.1016/0092-8674(94)90528-2 Google Scholar
  25. 25.
    Devriendt K, Kim AS, Mathijs G et al (2001) Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet 27:313–317. doi: 10.1038/85886 CrossRefPubMedGoogle Scholar
  26. 26.
    Dustin ML, Cooper JA (2000) The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat Immunol 1:23–29. doi: 10.1038/76877 CrossRefPubMedGoogle Scholar
  27. 27.
    Filipovich A (2001) Impact of donor type on outcome of bone marrow transplantation for Wiskott-Aldrich syndrome: collaborative study of the international bone marrow transplant registry and the national marrow donor program. Blood. doi: 10.1182/blood.V97.6.1598 Google Scholar
  28. 28.
    Friedrich W, Schütz C, Schulz A, Benninghoff U (2009) Results and long-term outcome in 39 patients with Wiskott–Aldrich syndrome transplanted from HLA-matched and-mismatched donors. Immunol Res 44(1-3):18–24Google Scholar
  29. 29.
    Gabriel R, Eckenberg R, Paruzynski A et al (2009) Comprehensive genomic access to vector integration in clinical gene therapy. Nat Med 15:1431–1436. doi: 10.1038/nm.2057 CrossRefPubMedGoogle Scholar
  30. 30.
    Gennery AR, Slatter MA, Grandin L, Taupin P (2010) Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: entering a new century, do we do better? J Allergy Clin Immunol 126(3):602–10.e1–11Google Scholar
  31. 31.
    Haddad E, Zugaza JL, Louache F (2001) The interaction between Cdc42 and WASP is required for SDF-1–induced T-lymphocyte chemotaxis. Blood 97(1):33–38. doi: 10.1182/blood.V97.1.33 Google Scholar
  32. 32.
    Imai K, Morio T, Zhu Y et al (2004) Clinical course of patients with WASP gene mutations. Blood 103:456–464. doi: 10.1182/blood-2003-05-1480 CrossRefPubMedGoogle Scholar
  33. 33.
    Jin Y, Mazza C, Christie JR et al (2004) Mutations of the Wiskott-Aldrich Syndrome Protein (WASP): hotspots, effect on transcription, and translation and phenotype/genotype correlation. Blood 104:4010–4019. doi: 10.1182/blood-2003-05-1592 CrossRefPubMedGoogle Scholar
  34. 34.
    Kim YG, Cha J (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160. doi: 10.1073/pnas.93.3.1156 Google Scholar
  35. 35.
    Kim AS, Kakalis LT, Abdul-Manan N et al (2000) Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 404:151–158. doi: 10.1038/35004513 CrossRefPubMedGoogle Scholar
  36. 36.
    Kobayashi R, Ariga T, Nonoyama S et al (2006) Outcome in patients with Wiskott-Aldrich syndrome following stem cell transplantation: an analysis of 57 patients in Japan. Br J Haematol 135:362–366. doi: 10.1111/j.1365-2141.2006.06297.x CrossRefPubMedGoogle Scholar
  37. 37.
    Kootstra NA, Verma IM (2003) Gene therapy with viral vectors. Annu Rev Pharmacol Toxicol 43:413–439. doi: 10.1146/annurev.pharmtox.43.100901.140257 CrossRefPubMedGoogle Scholar
  38. 38.
    Lacout C, Haddad E, Sabri S et al (2003) A defect in hematopoietic stem cell migration explains the nonrandom X-chromosome inactivation in carriers of Wiskott-Aldrich syndrome. Blood 102:1282–1289. doi: 10.1182/blood-2002-07-2099 CrossRefPubMedGoogle Scholar
  39. 39.
    Lum LG, Tubergen DG, Corash L, Blaese RM (1980) Splenectomy in the management of the thrombocytopenia of the Wiskott-Aldrich syndrome. N Engl J Med 302:892–896. doi: 10.1056/NEJM198004173021604 CrossRefPubMedGoogle Scholar
  40. 40.
    Mahlaoui N, Pellier I, Mignot C et al (2013) Characteristics and outcome of early-onset, severe forms of Wiskott-Aldrich syndrome. Blood 121:1510–1516. doi: 10.1182/blood-2012-08-448118 CrossRefPubMedGoogle Scholar
  41. 41.
    Marshall CJ, Thrasher AJ (2001) The embryonic origins of human haematopoiesis. Br J Haematol. doi: 10.1046/j.1365-2141.2001.02537.x Google Scholar
  42. 42.
    Mathew P, Conley ME (1995) Effect of intravenous gamma globulin (IVIG) on the platelet count in patients with Wiskott-Aldrich syndrome. Pediatr Allergy Immunol 6:91–94. doi: 10.1111/j.1399-3038.1995.tb00265.x CrossRefPubMedGoogle Scholar
  43. 43.
    Meyer-Bahlburg A, Becker-Herman S, Humblet-Baron S et al (2008) Wiskott-Aldrich syndrome protein deficiency in B cells results in impaired peripheral homeostasis. Blood 112:4158–4169. doi: 10.1182/blood-2008-02-140814 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Mikkers H, Pike-Overzet K, Staal FJ (2012) Induced pluripotent stem cells and severe combined immunodeficiency: merely disease modeling or potentially a novel cure? Pediatr Res 71:427–432. doi: 10.1038/pr.2011.65 CrossRefPubMedGoogle Scholar
  45. 45.
    Miller JC, Tan S, Qiao G et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148. doi: 10.1038/nbt.1755 CrossRefPubMedGoogle Scholar
  46. 46.
    Moratto D, Giliani S, Bonfim C et al (2011) Long-term outcome and lineage-specific chimerism in 194 patients with Wiskott-Aldrich syndrome treated by hematopoietic cell transplantation in the period 1980–2009: an international collaborative study. Blood 118:1675–1684. doi: 10.1182/blood-2010-11-319376 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Moreno-Carranza B, Gentsch M, Stein S et al (2009) Transgene optimization significantly improves SIN vector titers, gp91phox expression and reconstitution of superoxide production in X-CGD cells. Gene Ther 16:111–118. doi: 10.1038/gt.2008.143 CrossRefPubMedGoogle Scholar
  48. 48.
    Nathan DG (1980) Splenectomy in the Wiskott-Aldrich syndrome. N Engl J Med. 17;302(16):916–7Google Scholar
  49. 49.
    Orange JS (2008) Formation and function of the lytic NK-cell immunological synapse. Nat Rev Immunol 8:713–725. doi: 10.1038/nri2381 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Orange JS, Ramesh N, Remold-O’Donnell E et al (2002) Wiskott-Aldrich syndrome protein is required for NK cell cytotoxicity and colocalizes with actin to NK cell-activating immunologic synapses. Proc Natl Acad Sci U S A 99:11351–11356. doi: 10.1073/pnas.162376099 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Oshima K, Imai K, Albert MH et al (2014) Hematopoietic stem cell transplantation for X-linked thrombocytopenia with mutations in the WAS gene. J Clin Immunol. doi: 10.1007/s10875-014-0105-5 Google Scholar
  52. 52.
    Ozsahin H, Cavazzana-Calvo M, Notarangelo LD et al (2008) Long-term outcome following hematopoietic stem-cell transplantation in Wiskott-Aldrich syndrome: collaborative study of the European society for immunodeficiencies and European group for blood and marrow transplantation. Blood 111:439–445. doi: 10.1182/blood-2007-03-076679 CrossRefPubMedGoogle Scholar
  53. 53.
    Pai SY, DeMartiis D, Forino C, Cavagnini S (2006) Stem cell transplantation for the Wiskott–Aldrich syndrome: a single-center experience confirms efficacy of matched unrelated donor transplantation. Bone Marrow Transplant. 38(10):671–679. doi: 10.1038/sj.bmt.1705512 Google Scholar
  54. 54.
    Panchal SC, Kaiser DA, Torres E et al (2003) A conserved amphipathic helix in WASP/Scar proteins is essential for activation of Arp2/3 complex. Nat Struct Biol 10:591–598. doi: 10.1038/nsb952 CrossRefPubMedGoogle Scholar
  55. 55.
    Parolini O, Berardelli S, Riedl E et al (1997) Expression of Wiskott-Aldrich syndrome protein (WASP) gene during hematopoietic differentiation. Blood 90:70–75PubMedGoogle Scholar
  56. 56.
    Perry GS, Spector BD, Schuman LM et al (1980) The Wiskott-Aldrich syndrome in the United States and Canada (1892–1979). J Pediatr 97:72–78CrossRefPubMedGoogle Scholar
  57. 57.
    Persons DA (2010) Lentiviral vector gene therapy: effective and safe? Mol Ther 18:861–862. doi: 10.1038/mt.2010.70 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465CrossRefPubMedGoogle Scholar
  59. 59.
    Qasim W, Gaspar HB, Thrasher AJ (2009) Progress and prospects: gene therapy for inherited immunodeficiencies. Gene Ther 16:1285–1291. doi: 10.1038/gt.2009.127 CrossRefPubMedGoogle Scholar
  60. 60.
    Ramesh N, Antón IM, Hartwig JH, Geha RS (1997) WIP, a protein associated with wiskott-aldrich syndrome protein, induces actin polymerization and redistribution in lymphoid cells. Proc Natl Acad Sci U S A 94:14671–14676CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Ran FA, Hsu PD, Lin C-YY et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389. doi: 10.1016/j.cell.2013.08.021 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Recher M, Burns SO, Miguel A, Volpi S (2012) B cell–intrinsic deficiency of the Wiskott-Aldrich syndrome protein (WASp) causes severe abnormalities of the peripheral B-cell compartment in mice. Blood 119(12):2819–2828. doi: 10.1182/blood-2011-09-379412 Google Scholar
  63. 63.
    Rechitsky S, Kuliev A, Tur-Kaspa I et al (2004) Preimplantation genetic diagnosis with HLA matching. Reprod BioMed Online 9:210–221CrossRefPubMedGoogle Scholar
  64. 64.
    Rohatgi R, Ma L, Miki H et al (1999) The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97:221–231CrossRefPubMedGoogle Scholar
  65. 65.
    Sabri S, Foudi A, Boukour S et al (2006) Deficiency in the Wiskott-Aldrich protein induces premature proplatelet formation and platelet production in the bone marrow compartment. Blood 108:134–140. doi: 10.1182/blood-2005-03-1219 CrossRefPubMedGoogle Scholar
  66. 66.
    Shcherbina A, Rosen FS, Remold-O’Donnell E (1999) WASP levels in platelets and lymphocytes of wiskott-aldrich syndrome patients correlate with cell dysfunction. J Immunol 163:6314–6320PubMedGoogle Scholar
  67. 67.
    Siminovitch KA (2003) Prenatal diagnosis and genetic analysis of Wiskott-Aldrich syndrome. Prenat Diagn 23:1014–1016. doi: 10.1002/pd.745 CrossRefPubMedGoogle Scholar
  68. 68.
    Snapper SB, Rosen FS, Mizoguchi E, Cohen P (1998) Wiskott-Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity 9:81–91CrossRefPubMedGoogle Scholar
  69. 69.
    Sullivan KE, Mullen CA, Blaese RM (1994) A multiinstitutional survey of the Wiskott-Aldrich syndrome. J Pediatr 125(6 Pt 1):876–85Google Scholar
  70. 70.
    Symons M, Derry J, Karlak B et al (1996) Wiskott–Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 84:723–734CrossRefPubMedGoogle Scholar
  71. 71.
    Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi: 10.1016/j.cell.2007.11.019 CrossRefPubMedGoogle Scholar
  72. 72.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. doi: 10.1016/j.cell.2006.07.024 CrossRefPubMedGoogle Scholar
  73. 73.
    Takenawa T, Suetsugu S (2007) The WASP–WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol. doi: 10.1038/nrm2069 PubMedGoogle Scholar
  74. 74.
    Takenawa T, Miki H (2001) WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J Cell Sci 114:1801–1809PubMedGoogle Scholar
  75. 75.
    Tavassoli M, Aoki M (1981) Migration of entire megakaryocytes through the marrow--blood barrier. Br J Haematol 48:25–29CrossRefPubMedGoogle Scholar
  76. 76.
    Thornhill SI, Schambach A, Howe SJ et al (2008) Self-inactivating gammaretroviral vectors for gene therapy of X-linked severe combined immunodeficiency. Mol Ther 16:590–598. doi: 10.1038/sj.mt.6300393 CrossRefPubMedGoogle Scholar
  77. 77.
    Thrasher AJ, Burns SO (2010) WASP: a key immunological multitasker. Nat Rev Immunol 10:182–192. doi: 10.1038/nri2724 CrossRefPubMedGoogle Scholar
  78. 78.
    Trevino AE, Zhang F (2014) Genome editing using Cas9 nickases. Methods Enzymol 546:161–174. doi: 10.1016/B978-0-12-801185-0.00008-8 CrossRefPubMedGoogle Scholar
  79. 79.
    Tsuboi S, Meerloo J (2007) Wiskott-Aldrich syndrome protein is a key regulator of the phagocytic cup formation in macrophages. J Biol Chem 282:34194–34203. doi: 10.1074/jbc.M705999200 CrossRefPubMedGoogle Scholar
  80. 80.
    Volkman BF, Prehoda KE, Scott JA et al (2002) Structure of the N-WASP EVH1 domain-WIP complex: insight into the molecular basis of Wiskott-Aldrich Syndrome. Cell 111:565–576CrossRefPubMedGoogle Scholar
  81. 81.
    Wiskott, A. (1937) Familiärer, angeborener Morbus Werlhofii? Monatsschrift für Kinderheilkunde. 68:212–216Google Scholar
  82. 82.
    Witzel M, Braun C, Boztug K, Klein C (2013) Gene therapy for Wiskott–Aldrich syndrome. Expert Opin Orphan Drugs. doi: 10.1517/21678707.2013.830068 Google Scholar
  83. 83.
    Xu W, Russ JL, Eiden MV (2012) Evaluation of residual promoter activity in γ-retroviral self-inactivating (SIN) vectors. Mol Ther 20:84–90. doi: 10.1038/mt.2011.204 CrossRefPubMedGoogle Scholar
  84. 84.
    Yamanaka S (2010) Patient-specific pluripotent stem cells become even more accessible. Cell Stem Cell 7:1–2. doi: 10.1016/j.stem.2010.06.009 CrossRefPubMedGoogle Scholar
  85. 85.
    Zhang J, Shehabeldin A, da Cruz L (1999) Antigen receptor–induced activation and cytoskeletal rearrangement are impaired in Wiskott-Aldrich syndrome protein–deficient lymphocytes. J Exp Med 190(9):1329–1342Google Scholar
  86. 86.
    Zhang H, Schaff UY, Green CE et al (2006) Impaired integrin-dependent function in Wiskott-Aldrich syndrome protein-deficient murine and human neutrophils. Immunity 25:285–295. doi: 10.1016/j.immuni.2006.06.014 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Zhu Q, Watanabe C, Liu T et al (1997) Wiskott-Aldrich syndrome/X-linked thrombocytopenia: WASP gene mutations, protein expression, and phenotype. Blood 90:2680–2689PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dr. von Hauner Children’s HospitalLudwig-Maximilians-Universtität MünchenMunichGermany
  2. 2.Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology (MIT)CambridgeUSA

Personalised recommendations