Skip to main content

Mouse Models for Platelet Production and Function

  • Chapter
  • First Online:
Molecular and Cellular Biology of Platelet Formation

Abstract

Highly polyploid, mature bone marrow megakaryocytes convert their cytoplasm into long protrusions (proplatelets) which extend into the lumen of a vessel in bone marrow sinusoids where so-called pre-platelets are released and final platelet shaping and sizing occurs in the bloodstream. Platelets never undergo firm adhesion in the circulation, and only at sites of vascular injury, the adhesion potential becomes evident. This is critical for the formation of a platelet plug which seals the vessel and limits excessive blood loss, but is also a key step in the pathogenesis of ischemic cardio- and cerebrovascular diseases which represent the leading causes of death and severe disability worldwide. Static as well as shear stress-dependent in vitro assays helped us to identify and better understand the role of proteins and pathways in platelet biogenesis and function. However, in vitro experiments only provide limited mechanistic information as they cannot completely mimic these complex processes. The generation of genetically modified mice and the availability of large-scale mouse knockout programs producing a continuous resource of targeted mutations in all protein-encoding genes has been a major step forward in order to investigate these processes under in vivo conditions. Furthermore, the establishment of multiple assays to analyze platelet production and function, in combination with improved imaging techniques, such as intravital two-photon microscopy, helped us to better understand the underlying mechanisms. This chapter summarizes the most important mouse models that contributed significantly to our current knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hartwig J, Italiano J (2003) The birth of the platelet. J Thromb Haemost: JTH 1:1580–1586

    Article  CAS  PubMed  Google Scholar 

  2. Jackson S (2011) Arterial thrombosis – insidious, unpredictable and deadly. Nat Med 17:1423–1436

    Article  CAS  PubMed  Google Scholar 

  3. Nieswandt B, Pleines I, Bender M (2011) Platelet adhesion and activation mechanisms in arterial thrombosis and ischaemic stroke. J Thromb Haemost: JTH 9(Suppl 1):92–104

    Article  CAS  PubMed  Google Scholar 

  4. Lopez A, Mathers C, Ezzati M, Jamison D, Murray C (2006) Global burden of disease and risk factors. World Bank, Washington, DC

    Book  Google Scholar 

  5. Hagedorn I, Vögtle T, Nieswandt B (2010) Arterial thrombus formation. Novel mechanisms and targets. Hamostaseologie 30:127–135

    CAS  PubMed  Google Scholar 

  6. Stoll G, Kleinschnitz C, Nieswandt B (2008) Molecular mechanisms of thrombus formation in ischemic stroke: novel insights and targets for treatment. Blood 112:3555–3562

    Article  CAS  PubMed  Google Scholar 

  7. Varga-Szabo D, Pleines I, Nieswandt B (2008) Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol 28:403–412

    Article  CAS  PubMed  Google Scholar 

  8. Varga-Szabo D, Braun A, Nieswandt B (2009) Calcium signaling in platelets. J Thromb Haemost: JTH 7:1057–1066

    Article  CAS  PubMed  Google Scholar 

  9. Nieswandt B, Varga-Szabo D, Elvers M (2009) Integrins in platelet activation. J Thromb Haemost: JTH 7(Suppl 1):206–209

    Article  CAS  PubMed  Google Scholar 

  10. Junt T et al (2007) Dynamic visualization of thrombopoiesis within bone marrow. Science (New York, NY) 317:1767–1770

    Article  CAS  Google Scholar 

  11. Zhang L et al (2012) A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis. J Exp Med 209:2165–2181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bender M et al (2014) Megakaryocyte-specific Profilin1-deficiency alters microtubule stability and causes a Wiskott-Aldrich syndrome-like platelet defect. Nat Commun 5:4746

    Article  CAS  PubMed  Google Scholar 

  13. Stalker T et al (2013) Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood 121:1875–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sachs U, Nieswandt B (2007) In vivo thrombus formation in murine models. Circ Res 100:979–991

    Article  CAS  PubMed  Google Scholar 

  15. Kühn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science (New York, NY) 269:1427–1429

    Article  Google Scholar 

  16. Tiedt R, Schomber T, Hao-Shen H, Skoda R (2007) Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo. Blood 109:1503–1506

    Article  CAS  PubMed  Google Scholar 

  17. Sander J, Joung J (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang H et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim I, Shin J, Seong J (2010) Mouse phenogenomics, toolbox for functional annotation of human genome. BMB Rep 43:79–90

    Article  CAS  PubMed  Google Scholar 

  20. Schmitt A, Guichard J, Massé J, Debili N, Cramer E (2001) Of mice and men: comparison of the ultrastructure of megakaryocytes and platelets. Exp Hematol 29:1295–1302

    Article  CAS  PubMed  Google Scholar 

  21. Li T-T et al (2004) Genetic variation responsible for mouse strain differences in integrin alpha 2 expression is associated with altered platelet responses to collagen. Blood 103:3396–3402

    Article  CAS  PubMed  Google Scholar 

  22. Kuter D (2014) Milestones in understanding platelet production: a historical overview. Br J Haematol 165:248–258

    Article  CAS  PubMed  Google Scholar 

  23. Hitchcock I, Kaushansky K (2014) Thrombopoietin from beginning to end. Br J Haematol 165:259–268

    Article  CAS  PubMed  Google Scholar 

  24. Gurney A, Carver-Moore K, de Sauvage F, Moore M (1994) Thrombocytopenia in c-mpl-deficient mice. Science (New York, NY) 265:1445–1447

    Article  CAS  Google Scholar 

  25. de Sauvage F et al (1996) Physiological regulation of early and late stages of megakaryocytopoiesis by thrombopoietin. J Exp Med 183:651–656

    Article  PubMed  Google Scholar 

  26. Bunting S et al (1997) Normal platelets and megakaryocytes are produced in vivo in the absence of thrombopoietin. Blood 90:3423–3429

    CAS  PubMed  Google Scholar 

  27. Carver-Moore K et al (1996) Low levels of erythroid and myeloid progenitors in thrombopoietin-and c-mpl-deficient mice. Blood 88:803–808

    CAS  PubMed  Google Scholar 

  28. de Sauvage F, Villeval J, Shivdasani R (1998) Regulation of megakaryocytopoiesis and platelet production: lessons from animal models. J Lab Clin Med 131:496–501

    Article  PubMed  Google Scholar 

  29. Ng A et al (2014) Mpl expression on megakaryocytes and platelets is dispensable for thrombopoiesis but essential to prevent myeloproliferation. Proc Natl Acad Sci U S A 111:5884–5889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meyer S et al (2014) Genetic studies reveal an unexpected negative regulatory role for Jak2 in thrombopoiesis. Blood 124:2280–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Skoda R (2014) Less Jak2 makes more platelets. Blood 124:2168–2169

    Article  CAS  PubMed  Google Scholar 

  32. Grozovsky R et al (2015) The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling. Nat Med 21:47–54

    Article  CAS  PubMed  Google Scholar 

  33. Kile B (2014) The role of apoptosis in megakaryocytes and platelets. Br J Haematol 165:217–226

    Article  CAS  PubMed  Google Scholar 

  34. De Botton S et al (2002) Platelet formation is the consequence of caspase activation within megakaryocytes. Blood 100:1310–1317

    Article  PubMed  CAS  Google Scholar 

  35. Clarke M, Savill J, Jones D, Noble B, Brown S (2003) Compartmentalized megakaryocyte death generates functional platelets committed to caspase-independent death. J Cell Biol 160:577–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Josefsson E et al (2011) Megakaryocytes possess a functional intrinsic apoptosis pathway that must be restrained to survive and produce platelets. J Exp Med 208:2017–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Josefsson E et al (2014) Platelet production proceeds independently of the intrinsic and extrinsic apoptosis pathways. Nat Commun 5:3455

    Article  PubMed  CAS  Google Scholar 

  38. Schulze H, Shivdasani R (2004) Molecular mechanisms of megakaryocyte differentiation. Semin Thromb Hemost 30:389–398

    Article  CAS  PubMed  Google Scholar 

  39. Tijssen M, Ghevaert C (2013) Transcription factors in late megakaryopoiesis and related platelet disorders. J Thromb Haemost: JTH 11:593–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fujiwara Y, Browne C, Cunniff K, Goff S, Orkin S (1996) Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci U S A 93:12355–12358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pevny L et al (1991) Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349:257–260

    Article  CAS  PubMed  Google Scholar 

  42. Pevny L et al (1995) Development of hematopoietic cells lacking transcription factor GATA-1. Development 121:163–172

    CAS  PubMed  Google Scholar 

  43. Shivdasani R, Fujiwara Y, McDevitt M, Orkin S (1997) A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J 16:3965–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nurden A (2005) Qualitative disorders of platelets and megakaryocytes. J Thromb Haemost: JTH 3:1773–1782

    Article  CAS  PubMed  Google Scholar 

  45. Tsang A, Fujiwara Y, Hom D, Orkin S (1998) Failure of megakaryopoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG. Genes Dev 12:1176–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shivdasani R et al (1995) Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 81:695–704

    Article  CAS  PubMed  Google Scholar 

  47. Shivdasani R, Orkin S (1995) Erythropoiesis and globin gene expression in mice lacking the transcription factor NF-E2. Proc Natl Acad Sci U S A 92:8690–8694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Okuda T, van Deursen J, Hiebert S, Grosveld G, Downing J (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84:321–330

    Article  CAS  PubMed  Google Scholar 

  49. Wang Q et al (1996) Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci U S A 93:3444–3449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ichikawa M et al (2004) AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 10:299–304

    Article  CAS  PubMed  Google Scholar 

  51. Growney J et al (2005) Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 106:494–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Michaud J et al (2002) In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood 99:1364–1372

    Article  CAS  PubMed  Google Scholar 

  53. Song W et al (1999) Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 23:166–175

    Article  CAS  PubMed  Google Scholar 

  54. Hartwig J, Italiano J (2006) Cytoskeletal mechanisms for platelet production. Blood Cells Mol Dis 36:99–103

    Article  CAS  PubMed  Google Scholar 

  55. Machlus K, Italiano J (2013) The incredible journey: from megakaryocyte development to platelet formation. J Cell Biol 201:785–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bender M et al (2014) Microtubule sliding drives proplatelet elongation and is dependent on cytoplasmic dynein. Blood 125:860–868

    Article  PubMed  CAS  Google Scholar 

  57. Patel S et al (2005) Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes. Blood 106:4076–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schwer H et al (2001) A lineage-restricted and divergent beta-tubulin isoform is essential for the biogenesis, structure and function of blood platelets. Curr Biol: CB 11:579–586

    Article  CAS  PubMed  Google Scholar 

  59. Kunishima S, Kobayashi R, Itoh T, Hamaguchi M, Saito H (2009) Mutation of the beta1-tubulin gene associated with congenital macrothrombocytopenia affecting microtubule assembly. Blood 113:458–461

    Article  CAS  PubMed  Google Scholar 

  60. Kunert S et al (2009) The microtubule modulator RanBP10 plays a critical role in regulation of platelet discoid shape and degranulation. Blood 114:5532–5540

    Article  CAS  PubMed  Google Scholar 

  61. Pleines I et al (2013) Defective tubulin organization and proplatelet formation in murine megakaryocytes lacking Rac1 and Cdc42. Blood 122:3178–3187

    Article  CAS  PubMed  Google Scholar 

  62. Bender M et al (2010) ADF/n-cofilin-dependent actin turnover determines platelet formation and sizing. Blood 116:1767–1775

    Article  CAS  PubMed  Google Scholar 

  63. Falet H et al (2010) A novel interaction between FlnA and Syk regulates platelet ITAM-mediated receptor signaling and function. J Exp Med 207:1967–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jurak Begonja A, Hoffmeister K, Hartwig J, Falet H (2011) FlnA-null megakaryocytes prematurely release large and fragile platelets that circulate poorly. Blood 118:2285–2295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Nurden P et al (2011) Thrombocytopenia resulting from mutations in filamin A can be expressed as an isolated syndrome. Blood 118:5928–5937

    Article  CAS  PubMed  Google Scholar 

  66. Berrou E et al (2013) Heterogeneity of platelet functional alterations in patients with filamin A mutations. Arterioscler Thromb Vasc Biol 33:8

    Article  CAS  Google Scholar 

  67. Snapper S et al (1998) Wiskott-Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity 9:81–91

    Article  CAS  PubMed  Google Scholar 

  68. Althaus K, Greinacher A (2009) MYH9-related platelet disorders. Semin Thromb Hemost 35:189–203

    Article  CAS  PubMed  Google Scholar 

  69. Zhang Y et al (2012) Mouse models of MYH9-related disease: mutations in nonmuscle myosin II-A. Blood 119:238–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen Z et al (2007) The May-Hegglin anomaly gene MYH9 is a negative regulator of platelet biogenesis modulated by the Rho-ROCK pathway. Blood 110:171–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schiviz A et al (2014) Influence of genetic background on bleeding phenotype in the tail-tip bleeding model and recommendations for standardization: communication from the SSC of the ISTH. J Thromb Haemost: JTH 12:1940–1942

    Article  CAS  PubMed  Google Scholar 

  72. Greene T et al (2010) Towards a standardization of the murine tail bleeding model. J Thromb Haemost: JTH 8:2820–2822

    Article  CAS  PubMed  Google Scholar 

  73. Broze G, Yin Z, Lasky N (2001) A tail vein bleeding time model and delayed bleeding in hemophiliac mice. Thromb Haemost 85:747–748

    CAS  PubMed  Google Scholar 

  74. Day S, Reeve J, Myers D, Fay W (2004) Murine thrombosis models. Thromb Haemost 92:486–494

    CAS  PubMed  Google Scholar 

  75. Falati S, Gross P, Merrill-Skoloff G, Furie B, Furie B (2002) Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med 8:1175–1181

    Article  CAS  PubMed  Google Scholar 

  76. Nonne C et al (2005) Importance of platelet phospholipase Cgamma2 signaling in arterial thrombosis as a function of lesion severity. Arterioscler Thromb Vasc Biol 25:1293–1298

    Article  CAS  PubMed  Google Scholar 

  77. Konishi H et al (2002) Platelets activated by collagen through immunoreceptor tyrosine-based activation motif play pivotal role in initiation and generation of neointimal hyperplasia after vascular injury. Circulation 105:912–916

    Article  CAS  PubMed  Google Scholar 

  78. Massberg S et al (2003) A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med 197:41–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Massberg S et al (2002) A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 196:887–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Grüner S et al (2004) Anti-glycoprotein VI treatment severely compromises hemostasis in mice with reduced alpha2beta1 levels or concomitant aspirin therapy. Circulation 110:2946–2951

    Article  PubMed  CAS  Google Scholar 

  81. Mangin P et al (2006) Thrombin overcomes the thrombosis defect associated with platelet GPVI/FcRgamma deficiency. Blood 107:4346–4353

    Article  CAS  PubMed  Google Scholar 

  82. Bender M, Hagedorn I, Nieswandt B (2011) Genetic and antibody-induced glycoprotein VI deficiency equally protects mice from mechanically and FeCl(3) -induced thrombosis. J Thromb Haemost: JTH 9:1423–1426

    Article  CAS  PubMed  Google Scholar 

  83. Eckly A et al (2011) Mechanisms underlying FeCl3-induced arterial thrombosis. J Thromb Haemost: JTH 9:779–789

    Article  CAS  PubMed  Google Scholar 

  84. Dubois C, Panicot-Dubois L, Merrill-Skoloff G, Furie B, Furie B (2006) Glycoprotein VI-dependent and -independent pathways of thrombus formation in vivo. Blood 107:3902–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Matsuno H, Uematsu T, Nagashima S, Nakashima M (1991) Photochemically induced thrombosis model in rat femoral artery and evaluation of effects of heparin and tissue-type plasminogen activator with use of this model. J Pharmacol Methods 25:303–317

    Article  CAS  PubMed  Google Scholar 

  86. Kikuchi S, Umemura K, Kondo K, Saniabadi A, Nakashima M (1998) Photochemically induced endothelial injury in the mouse as a screening model for inhibitors of vascular intimal thickening. Arterioscler Thromb Vasc Biol 18:1069–1078

    Article  CAS  PubMed  Google Scholar 

  87. Westrick R, Winn M, Eitzman D (2007) Murine models of vascular thrombosis (Eitzman series). Arterioscler Thromb Vasc Biol 27:2079–2093

    Article  CAS  PubMed  Google Scholar 

  88. Canobbio I, Balduini C, Torti M (2004) Signalling through the platelet glycoprotein Ib-V-IX complex. Cell Signal 16:1329–1344

    Article  CAS  PubMed  Google Scholar 

  89. Ware J, Russell S, Ruggeri Z (2000) Generation and rescue of a murine model of platelet dysfunction: the Bernard-Soulier syndrome. Proc Natl Acad Sci U S A 97:2803–2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kato K et al (2004) Genetic deletion of mouse platelet glycoprotein Ibbeta produces a Bernard-Soulier phenotype with increased alpha-granule size. Blood 104:2339–2344

    Article  CAS  PubMed  Google Scholar 

  91. Kahn M et al (1999) Glycoprotein V-deficient platelets have undiminished thrombin responsiveness and do not exhibit a Bernard-Soulier phenotype. Blood 94:4112–4121

    CAS  PubMed  Google Scholar 

  92. Kanaji T, Russell S, Ware J (2002) Amelioration of the macrothrombocytopenia associated with the murine Bernard-Soulier syndrome. Blood 100:2102–2107

    Article  CAS  PubMed  Google Scholar 

  93. Bergmeier W et al (2006) The role of platelet adhesion receptor GPIbalpha far exceeds that of its main ligand, von Willebrand factor, in arterial thrombosis. Proc Natl Acad Sci U S A 103:16900–16905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Denis C et al (1998) A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci U S A 95:9524–9529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wu D et al (2002) Inhibition of the von Willebrand (VWF)-collagen interaction by an antihuman VWF monoclonal antibody results in abolition of in vivo arterial platelet thrombus formation in baboons. Blood 99:3623–3628

    Article  CAS  PubMed  Google Scholar 

  96. Cauwenberghs N et al (2000) Antithrombotic effect of platelet glycoprotein Ib-blocking monoclonal antibody Fab fragments in nonhuman primates. Arterioscler Thromb Vasc Biol 20:1347–1353

    Article  CAS  PubMed  Google Scholar 

  97. Elvers M et al (2010) Impaired alpha(IIb)beta(3) integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1. Sci Signal 3:ra1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Stegner D et al (2013) Pharmacological inhibition of phospholipase D protects mice from occlusive thrombus formation and ischemic stroke – brief report. Arterioscler Thromb Vasc Biol 33:2212–2217

    Article  CAS  PubMed  Google Scholar 

  99. Banno F et al (2009) The distal carboxyl-terminal domains of ADAMTS13 are required for regulation of in vivo thrombus formation. Blood 113:5323–5329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bergmeier W et al (2004) Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates GPIbalpha shedding from platelets in vitro and in vivo. Circ Res 95:677–683

    Article  CAS  PubMed  Google Scholar 

  101. Bender M et al (2010) Differentially regulated GPVI ectodomain shedding by multiple platelet-expressed proteinases. Blood 116:3347–3355

    Article  CAS  PubMed  Google Scholar 

  102. Dütting S, Bender M, Nieswandt B (2012) Platelet GPVI: a target for antithrombotic therapy?! Trends Pharmacol Sci 33:583–590

    Article  PubMed  CAS  Google Scholar 

  103. Arthur J, Dunkley S, Andrews R (2007) Platelet glycoprotein VI-related clinical defects. Br J Haematol 139:363–372

    Article  CAS  PubMed  Google Scholar 

  104. Dumont B et al (2009) Absence of collagen-induced platelet activation caused by compound heterozygous GPVI mutations. Blood 114:1900–1903

    Article  CAS  PubMed  Google Scholar 

  105. Hermans C et al (2009) A compound heterozygous mutation in glycoprotein VI in a patient with a bleeding disorder. J Thromb Haemost: JTH 7:1356–1363

    Article  CAS  PubMed  Google Scholar 

  106. Matus V et al (2013) An adenine insertion in exon 6 of human GP6 generates a truncated protein associated with a bleeding disorder in four Chilean families. J Thromb Haemost: JTH 11:1751–1759

    Article  CAS  PubMed  Google Scholar 

  107. Li H et al (2007) The Fab fragment of a novel anti-GPVI monoclonal antibody, OM4, reduces in vivo thrombosis without bleeding risk in rats. Arterioscler Thromb Vasc Biol 27:1199–1205

    Article  CAS  PubMed  Google Scholar 

  108. Matsumoto Y et al (2006) Ex vivo evaluation of anti-GPVI antibody in cynomolgus monkeys: dissociation between anti-platelet aggregatory effect and bleeding time. Thromb Haemost 96:167–175

    CAS  PubMed  Google Scholar 

  109. Ohlmann P et al (2008) Ex vivo inhibition of thrombus formation by an anti-glycoprotein VI Fab fragment in non-human primates without modification of glycoprotein VI expression. J Thromb Haemost: JTH 6:1003–1011

    Article  CAS  PubMed  Google Scholar 

  110. Nieswandt B et al (2001) Long-term antithrombotic protection by in vivo depletion of platelet glycoprotein VI in mice. J Exp Med 193:459–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schulte V et al (2003) Targeting of the collagen-binding site on glycoprotein VI is not essential for in vivo depletion of the receptor. Blood 101:3948–3952

    Article  CAS  PubMed  Google Scholar 

  112. Schulte V et al (2006) Two-phase antithrombotic protection after anti-glycoprotein VI treatment in mice. Arterioscler Thromb Vasc Biol 26:1640–1647

    Article  CAS  PubMed  Google Scholar 

  113. Boylan B, Berndt M, Kahn M, Newman P (2006) Activation-independent, antibody-mediated removal of GPVI from circulating human platelets: development of a novel NOD/SCID mouse model to evaluate the in vivo effectiveness of anti-human platelet agents. Blood 108:908–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rabie T et al (2007) Diverging signaling events control the pathway of GPVI down-regulation in vivo. Blood 110:529–535

    Article  CAS  PubMed  Google Scholar 

  115. Gardiner E et al (2007) Controlled shedding of platelet glycoprotein (GP)VI and GPIb-IX-V by ADAM family metalloproteinases. J Thromb Haemost: JTH 5:1530–1537

    Article  CAS  PubMed  Google Scholar 

  116. Bender M et al (2013) Combined in vivo depletion of glycoprotein VI and C-type lectin-like receptor 2 severely compromises hemostasis and abrogates arterial thrombosis in mice. Arterioscler Thromb Vasc Biol 33:926–934

    Article  CAS  PubMed  Google Scholar 

  117. Massberg S et al (2004) Soluble glycoprotein VI dimer inhibits platelet adhesion and aggregation to the injured vessel wall in vivo. FASEB J: Off Publ Fed Am Soc Exp Biol 18:397–399

    Article  CAS  Google Scholar 

  118. Grüner S et al (2005) Relative antithrombotic effect of soluble GPVI dimer compared with anti-GPVI antibodies in mice. Blood 105:1492–1499

    Article  PubMed  CAS  Google Scholar 

  119. Grüner S et al (2003) Multiple integrin-ligand interactions synergize in shear-resistant platelet adhesion at sites of arterial injury in vivo. Blood 102:4021–4027

    Article  PubMed  CAS  Google Scholar 

  120. Holtkötter O et al (2002) Integrin alpha 2-deficient mice develop normally, are fertile, but display partially defective platelet interaction with collagen. J Biol Chem 277:10789–10794

    Article  PubMed  CAS  Google Scholar 

  121. Chen J, Diacovo T, Grenache D, Santoro S, Zutter M (2002) The alpha(2) integrin subunit-deficient mouse: a multifaceted phenotype including defects of branching morphogenesis and hemostasis. Am J Pathol 161:337–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. He L et al (2003) The contributions of the alpha 2 beta 1 integrin to vascular thrombosis in vivo. Blood 102:3652–3657

    Article  CAS  PubMed  Google Scholar 

  123. Coughlin S (2001) Protease-activated receptors in vascular biology. Thromb Haemost 86:298–307

    CAS  PubMed  Google Scholar 

  124. Kahn M et al (1998) A dual thrombin receptor system for platelet activation. Nature 394:690–694

    Article  CAS  PubMed  Google Scholar 

  125. Weiss E, Hamilton J, Lease K, Coughlin S (2002) Protection against thrombosis in mice lacking PAR3. Blood 100:3240–3244

    Article  CAS  PubMed  Google Scholar 

  126. Sambrano G, Weiss E, Zheng Y, Huang W, Coughlin S (2001) Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature 413:74–78

    Article  CAS  PubMed  Google Scholar 

  127. Léon C et al (1999) Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y(1) receptor-null mice. J Clin Invest 104:1731–1737

    Article  PubMed  PubMed Central  Google Scholar 

  128. Andre P et al (2003) P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. J Clin Invest 112:398–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Thomas D et al (1998) Coagulation defects and altered hemodynamic responses in mice lacking receptors for thromboxane A2. J Clin Invest 102:1994–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Offermanns S (2006) Activation of platelet function through G protein-coupled receptors. Circ Res 99:1293–1304

    Article  CAS  PubMed  Google Scholar 

  131. Offermanns S, Toombs C, Hu Y, Simon M (1997) Defective platelet activation in G alpha(q)-deficient mice. Nature 389:183–186

    Article  CAS  PubMed  Google Scholar 

  132. Moers A et al (2003) G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nat Med 9:1418–1422

    Article  CAS  PubMed  Google Scholar 

  133. Shirakawa R et al (2004) Munc13-4 is a GTP-Rab27-binding protein regulating dense core granule secretion in platelets. J Biol Chem 279:10730–10737

    Article  CAS  PubMed  Google Scholar 

  134. Ren Q et al (2010) Munc13-4 is a limiting factor in the pathway required for platelet granule release and hemostasis. Blood 116:869–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Savage J et al (2013) Munc13-4 is critical for thrombosis through regulating release of ADP from platelets. J Thromb Haemost: JTH 11:771–775

    Article  CAS  PubMed  Google Scholar 

  136. Albers C et al (2011) Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome. Nat Genet 43:735–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kahr W et al (2011) Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome. Nat Genet 43:738–740

    Article  CAS  PubMed  Google Scholar 

  138. Gunay-Aygun M et al (2011) NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet α-granules. Nat Genet 43:732–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Deppermann C et al (2013) Gray platelet syndrome and defective thrombo-inflammation in Nbeal2-deficient mice. J Clin Invest 123:3331–3342

    Article  CAS  PubMed Central  Google Scholar 

  140. Kahr W et al (2013) Abnormal megakaryocyte development and platelet function in Nbeal2(-/-) mice. Blood 122:3349–3358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gibbins J (2002) The negative regulation of platelet function: extending the role of the ITIM. Trends Cardiovasc Med 12:213–219

    Article  CAS  PubMed  Google Scholar 

  142. Senis Y (2013) Protein-tyrosine phosphatases: a new frontier in platelet signal transduction. J Thromb Haemost: JTH 11:1800–1813

    CAS  PubMed  Google Scholar 

  143. Cherpokova D et al (2015) SLAP/SLAP2 prevent excessive platelet (hem)ITAM signaling in thrombosis and ischemic stroke in mice. Blood 125:185–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gupta S et al (2012) CLP36 is a negative regulator of glycoprotein VI signaling in platelets. Circ Res 111:1410–1420

    Article  CAS  PubMed  Google Scholar 

  145. Stalker T et al (2009) Endothelial cell specific adhesion molecule (ESAM) localizes to platelet-platelet contacts and regulates thrombus formation in vivo. J Thromb Haemost: JTH 7:1886–1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nurden A (2006) Glanzmann thrombasthenia. Orphanet J Rare Dis 1:10

    Article  PubMed  PubMed Central  Google Scholar 

  147. Hodivala-Dilke K et al (1999) Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest 103:229–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tronik-Le Roux D et al (2000) Thrombasthenic mice generated by replacement of the integrin alpha(IIb) gene: demonstration that transcriptional activation of this megakaryocytic locus precedes lineage commitment. Blood 96:1399–1408

    CAS  PubMed  Google Scholar 

  149. Suh T et al (1995) Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen-deficient mice. Genes Dev 9:2020–2033

    Article  CAS  PubMed  Google Scholar 

  150. Ni H et al (2000) Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest 106:385–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Moser M, Nieswandt B, Ussar S, Pozgajova M, Fässler R (2008) Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med 14:325–330

    Article  CAS  PubMed  Google Scholar 

  152. Petrich B et al (2007) Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. J Exp Med 204:3103–3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tadokoro S et al (2003) Talin binding to integrin beta tails: a final common step in integrin activation. Science (New York, NY) 302:103–106

    Article  CAS  Google Scholar 

  154. Malinin N et al (2009) A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nat Med 15:313–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Mory A et al (2008) Kindlin-3: a new gene involved in the pathogenesis of LAD-III. Blood 112:2591

    Article  CAS  PubMed  Google Scholar 

  156. Svensson L et al (2009) Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med 15:306–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chrzanowska-Wodnicka M, Smyth S, Schoenwaelder S, Fischer T, White G (2005) Rap1b is required for normal platelet function and hemostasis in mice. J Clin Invest 115:680–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Crittenden J et al (2004) CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nat Med 10:982–986

    Article  CAS  PubMed  Google Scholar 

  159. Stefanini L et al (2015) RASA3 is a critical inhibitor of RAP1-dependent platelet activation. J Clin Invest 125:1419–1432

    Article  PubMed  PubMed Central  Google Scholar 

  160. Stritt S et al (2015) Rap1-GTP-interacting adaptor molecule (RIAM) is dispensable for platelet integrin activation and function in mice. Blood 125:219–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Brass L, Zhu L, Stalker T (2005) Minding the gaps to promote thrombus growth and stability. J Clin Invest 115:3385–3392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hofmann S et al (2014) Mice lacking the SLAM family member CD84 display unaltered platelet function in hemostasis and thrombosis. PLoS One 9:e115306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Heemskerk J, Mattheij N, Cosemans JME (2013) Platelet-based coagulation: different populations, different functions. J Thromb Haemost: JTH 11:2–16

    Article  CAS  PubMed  Google Scholar 

  164. Müller F et al (2009) Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 139:1143–1156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Renné T et al (2005) Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med 202:271–281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Müller F, Gailani D, Renné T (2011) Factor XI and XII as antithrombotic targets. Curr Opin Hematol 18:349–355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Wang X et al (2005) Effects of factor IX or factor XI deficiency on ferric chloride-induced carotid artery occlusion in mice. J Thromb Haemost: JTH 3:695–702

    Article  CAS  PubMed  Google Scholar 

  168. Dewerchin M et al (2000) Blood coagulation factor X deficiency causes partial embryonic lethality and fatal neonatal bleeding in mice. Thromb Haemost 83:185–190

    CAS  PubMed  Google Scholar 

  169. Rosen E et al (1997) Mice lacking factor VII develop normally but suffer fatal perinatal bleeding. Nature 390:290–294

    Article  CAS  PubMed  Google Scholar 

  170. Bi L et al (1996) Further characterization of factor VIII-deficient mice created by gene targeting: RNA and protein studies. Blood 88:3446–3450

    CAS  PubMed  Google Scholar 

  171. Cox R, Church C (2011) Mouse models and the interpretation of human GWAS in type 2 diabetes and obesity. Dis Model Mech 4:155–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Prof. Dr. Bernhard Nieswandt holds a Chair of Experimental Biomedicine at the University Clinic and Rudolf Virchow Center, Würzburg Germany. This work was supported by the Deutsche Forschungsgemeinschaft (SFB688) and the Rudolf Virchow Centre.

Dr. Markus Bender is supported by the Deutsche Forschungsgemeinschaft (DFG) as a group leader in the Emmy Noether program of the DFG (BE 5084/3-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Bender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bender, M., Nieswandt, B. (2016). Mouse Models for Platelet Production and Function. In: Schulze, H., Italiano, J. (eds) Molecular and Cellular Biology of Platelet Formation. Springer, Cham. https://doi.org/10.1007/978-3-319-39562-3_11

Download citation

Publish with us

Policies and ethics