Advertisement

New Techniques for Non-interactive Shuffle and Range Arguments

  • Alonso GonzálezEmail author
  • Carla Ráfols
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9696)

Abstract

We construct the most efficient non-interactive Argument of Correctness of a Shuffle and Range Argument under falsifiable assumptions in asymmetric bilinear groups. Our constructions use as a common building block a novel quasi-adaptive argument for proving that n commitments open to messages in a public set S, with proof-size independent of n.

Keywords

Proof System Discrete Logarithm Full Version Commitment Scheme Falsifiable Assumption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 263–280. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Bayer, S., Groth, J.: Zero-Knowledge argument for polynomial evaluation with application to blacklists. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 646–663. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Camenisch, J.L., Chaabouni, R., Shelat, A.: Efficient protocols for set membership and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Chaabouni, R., Lipmaa, H., Zhang, B.: A non-interactive range proof with constant communication. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 179–199. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24, 84–88 (1981)CrossRefGoogle Scholar
  6. 6.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Fauzi, P., Lipmaa, H.: Efficient culpably sound nizk shuffle argument without random oracles. Cryptology ePrint Archive, Report 2015/1112 (2015). http://eprint.iacr.org/
  8. 8.
    González, A., Hevia, A., Ràfols, C.: QA-NIZK arguments in asymmetric groups: new tools and new constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 605–629. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48797-6_25 CrossRefGoogle Scholar
  9. 9.
    Groth, J.: Efficient zero-knowledge arguments from two-tiered homomorphic commitments. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 431–448. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups. SIAM J. Comput. 41(5), 1193–1232 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  15. 15.
    Kiltz, E., Pan, J., Wee, H.: Structure-Preserving signatures from standard assumptions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 275–295. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  16. 16.
    Kiltz, E., Wee, H.: Quasi-Adaptive NIZK for linear subspaces revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 101–128. Springer, Heidelberg (2015)Google Scholar
  17. 17.
    Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability: simulation-sound quasi-adaptive NIZK proofs and CCA2-Secure encryption from homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  18. 18.
    Lipmaa, H., Zhang, B.: A more efficient computationally sound non-interactive zero-knowledge shuffle argument. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 477–502. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Morillo, P., Ràfols, C., Villar, J.L.: Matrix computational assumptions in multilinear groups. Cryptology ePrint Archive, Report 2015/353 (2015). http://eprint.iacr.org/2015/353
  20. 20.
    Rial, A., Kohlweiss, M., Preneel, B.: Universally composable adaptive priced oblivious transfer. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 231–247. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.DCCUniversidad de ChileSantiagoChile
  2. 2.DTICUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations