Verifiable Multi-party Computation with Perfectly Private Audit Trail

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9696)

Abstract

We propose an efficient protocol for the evaluation of functions getting their inputs from multiple parties in a way that guarantees the result correctness. In our setting, a worker is trusted with the confidentiality of the inputs and, given this assumption, our protocol guarantees perfect privacy to the clients.

Our protocol offers an interesting middle ground between traditional verifiable computation protocols, that usually do not come with privacy guarantees and focus on one or a small number of clients, and secure multi-party computation protocol that distribute the privacy trust between a number of parties, at the cost of much more expensive protocols (especially for \(\mathsf {NP}\) functions and functions that do not admit an efficient static circuit representation) and a demanding infrastructure of independently managed servers interacting in multiple rounds. By contrast, our protocol is single-pass: the clients submit their inputs asynchronously, and everyone can collect the result at any later time.

We present three unrelated applications of our technique: solving a system of linear equations, an auction scheme and the search of the shortest path in a shared graph. These examples illustrate the ease of use and the advantage in terms of complexity of our approach. We made a prototype implementation that illustrates the practicality of our solution.

References

  1. 1.
    Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Baum, C., Damgård, I., Orlandi, C.: Publicly auditable secure multi-party computation. IACR Cryptology ePrint Archive 2014/75 (2014)Google Scholar
  3. 3.
    Aly, A., Cuvelier, E., Mawet, S., Pereira, O., Van Vyve, M.: Securely solving simple combinatorial graph problems. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 239–257. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Adida, B., De Marneffe, O., Pereira, O., Quisquater, J.J.: Electing a university president using open-audit voting: analysis of real-world use of Helios. EVT/WOTE 9, 10–10 (2009)Google Scholar
  6. 6.
    Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: IEEE Symposium on Security and Privacy (SP), pp. 238–252. IEEE (2013)Google Scholar
  7. 7.
    Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M., Parno, B., Zahur, S.: Geppetto: versatile verifiable computation. In: Proceedings of the IEEE Symposium on Security and Privacy. IEEE, May 2015Google Scholar
  8. 8.
    Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: Adsnark: nearly practical and privacy-preserving proofs on authenticated data. Cryptology ePrint Archive, Report 2014/617 (2014). http://eprint.iacr.org/
  9. 9.
    Zhang, Y., Papamanthou, C., Katz, J.: Alitheia: towards practical verifiable graph processing. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 856–867. ACM (2014)Google Scholar
  10. 10.
    Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifiable computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  13. 13.
    Gordon, S.D., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-client verifiable computation with stronger security guarantees. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 144–168. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  14. 14.
    Rabin, M.O., Servedio, R.A., Thorpe, C.: Highly efficient secrecy-preserving proofs of correctness of computation, US Patent App. 12/105, 508, 18 April 2008Google Scholar
  15. 15.
    Parkes, D.C., Rabin, M.O., Shieber, S.M., Thorpe, C.: Practical secrecy-preserving, verifiably correct and trustworthy auctions. Electron. Commer. Res. Appl. 7(3), 294–312 (2008)CrossRefGoogle Scholar
  16. 16.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 136–136. IEEE Computer Society (2001)Google Scholar
  17. 17.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: SIAM Journal on Computing, pp. 542–552 (1998)Google Scholar
  18. 18.
    Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of the Fiat-Shamir heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Damgård, I.: On \(\Sigma \)-protocols (2004). http://www.daimi.au.dk/ivan/Sigma.ps
  20. 20.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  21. 21.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and communications security, pp. 62–73. ACM (1993)Google Scholar
  22. 22.
    Cuvelier, É., Pereira, O., Peters, T.: Election verifiability or ballot privacy: do we need to choose? In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 481–498. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Cramer, R., Damgård, I.B., Schoenmakers, B.: Proof of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  24. 24.
    Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  25. 25.
    Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 100–113. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.ICTEAM/ELEN – Crypto GroupUniveristé Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations