Better Preprocessing for Secure Multiparty Computation

  • Carsten Baum
  • Ivan Damgård
  • Tomas Toft
  • Rasmus Zakarias
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9696)

Abstract

We present techniques and protocols for the preprocessing of secure multiparty computation (MPC), focusing on the so-called SPDZ MPC scheme [14] and its derivatives [1, 11, 13]. These MPC schemes consist of a so-called preprocessing or offline phase where correlated randomness is generated that is independent of the inputs and the evaluated function, and an online phase where such correlated randomness is consumed to securely and efficiently evaluate circuits. In the recent years, it has been shown that such protocols (such as [5, 17, 18]) turn out to be very efficient in practice.

While much research has been conducted towards optimizing the online phase of the MPC protocols, there seems to have been less focus on the offline phase of such protocols (except for [11]). With this work, we want to close this gap and give a toolbox of techniques that aim at optimizing the preprocessing. We support both instantiations over small fields and large rings using somewhat homomorphic encryption and the Paillier cryptosystem [19], respectively. In the case of small fields, we show how the preprocessing overhead can basically be made independent of the field characteristic. In the case of large rings, we present a protocol based on the Paillier cryptosystem which has a lower message complexity than previous protocols and employs more efficient zero-knowledge proofs that, to the best of our knowledge, were not presented in previous work.

Keywords

Efficient multiparty computation Preprocessing Paillier encryption 

References

  1. 1.
    Baum, C., Damgård, I., Orlandi, C.: Publicly auditable secure multi-party computation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 175–196. Springer, Heidelberg (2014)Google Scholar
  2. 2.
    Baum, C., Damgård, I., Toft, T., Zakarias, R.: Better preprocessing for secure multiparty computation (2016). https://eprint.iacr.org/2016/048
  3. 3.
    Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992)Google Scholar
  4. 4.
    Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure multiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: Proceedings of 42nd IEEE Symposium on Foundations of Computer Science, 2001, pp. 136–145. IEEE (2001)Google Scholar
  8. 8.
    Cramer, R., Damgård, I.B., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Cramer, R., Damgård, I., Pastro, V.: On the amortized complexity of zero knowledge protocols for multiplicative relations. In: Smith, A. (ed.) ICITS 2012. LNCS, vol. 7412, pp. 62–79. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilistic public-key system. PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Damgård, I.B., Nielsen, J.B.: Universally composable efficient multiparty computation from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Damgård, I., Zakarias, S.: Constant-overhead secure computation of boolean circuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 621–641. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Frederiksen, T.K., Keller, M., Orsini, E., Scholl, P.: A unified approach to MPC with preprocessing using OT. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 711–735. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6_29 CrossRefGoogle Scholar
  16. 16.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM (1987)Google Scholar
  17. 17.
    Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  18. 18.
    Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 8(2), 300–304 (1960)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Yao, A.C.-C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science, 1986, pp. 162–167. IEEE (1986)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Carsten Baum
    • 1
  • Ivan Damgård
    • 1
  • Tomas Toft
    • 2
  • Rasmus Zakarias
    • 1
  1. 1.Department of Computer ScienceAarhus UniversityAarhusDenmark
  2. 2.Danske BankCopenhagenDenmark

Personalised recommendations