Turing Machines with Shortcuts: Efficient Attribute-Based Encryption for Bounded Functions

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9696)

Abstract

We propose a direct construction of attribute-based encryption (ABE) scheme for bounded multi-stack deterministic pushdown automata (DPDAs) and Turing machines that have polynomial runtime in the security parameter. Particularly, we show how to extend our construction to handle bounded DPDAs with two or more stacks, which leads to an ABE scheme for deterministic Turing machines (DTMs) with polynomial runtime.

Our ABE schemes have “input-specific” decryption runtime meaning that the decryption time depends on the semantics of attributes. If a machine halts prematurely on a certain input, its execution can be cut short. To the best of our knowledge, our ABE scheme is the first one that achieves this property and has security proofs based on standard cryptographic assumption.

The key technical ingredient we apply is a special graph encoding on the executions of bounded DPDAs with multi-stacks, allowing us to remember just enough of the execution history to enforce correct evaluation. The security of our scheme is shown to be based on the learning with errors (LWE) problem in the selective security model.

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Attrapadung, N.: Dual system encryption via doubly selective security: framework, fully secure functional encryption for regular languages, and more. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–577. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X.: Efficient selective identity-based encryption without random oracles. J. Cryptol. 24(4), 659–693 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  5. 5.
    Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Boyen, X., Li, Q.: Attribute-based encryption for finite automata from LWE. In: Au, M.H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 247–267. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  7. 7.
    Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: STOC 2013, pp. 575–584. ACM (2013)Google Scholar
  8. 8.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are. In: IJCAI 1991, vol. 1, pp. 331–337. Morgan Kaufmann Publishers Inc., San Francisco (1991)Google Scholar
  10. 10.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS 2013, pp. 40–49. IEEE (2013)Google Scholar
  11. 11.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC 2008, pp. 197–206. ACM (2008)Google Scholar
  12. 12.
    Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: STOC 2013, pp. 545–554. ACM (2013)Google Scholar
  14. 14.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  15. 15.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: CCS 2006, pp. 89–98. ACM (2006)Google Scholar
  16. 16.
    Hohenberger, S., Waters, B.: Attribute-based encryption with fast decryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 162–179. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: STOC 2009, pp. 333–342. ACM (2009)Google Scholar
  22. 22.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC 2005, pp. 84–93. ACM (2005)Google Scholar
  23. 23.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Sipser, M.: Introduction to the Theory of Computation, vol. 2. Thomson Course Technology, Boston (2006)MATHGoogle Scholar
  25. 25.
    Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Queensland University of TechnologyBrisbaneAustralia

Personalised recommendations