Legally Fair Contract Signing Without Keystones

  • Houda Ferradi
  • Rémi Géraud
  • Diana Maimuț
  • David Naccache
  • David Pointcheval
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9696)

Abstract

In two-party computation, achieving both fairness and guaranteed output delivery is well known to be impossible. Despite this limitation, many approaches provide solutions of practical interest by weakening somewhat the fairness requirement. Such approaches fall roughly in three categories: “gradual release” schemes assume that the aggrieved party can eventually reconstruct the missing information; “optimistic schemes” assume a trusted third party arbitrator that can restore fairness in case of litigation; and “concurrent” or “legally fair” schemes in which a breach of fairness is compensated by the aggrieved party having a digitally signed cheque from the other party (called the keystone).

In this paper we describe and analyse a new contract signing paradigm that doesn’t require keystones to achieve legal fairness, and give a concrete construction based on Schnorr signatures which is compatible with standard Schnorr signatures and provably secure.

References

  1. 1.
    Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In: ACM CCS 1997: 4th Conference on Computer and Communications Security, pp. 7–17. ACM Press, Zurich 1–4 April 1997Google Scholar
  3. 3.
    Baum-Waidner, B., Waidner, M.: Round-optimal and abuse-free optimistic multi-party contract signing. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 524–535. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: 20th Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM Press, Chicago 2–4 May 1988Google Scholar
  5. 5.
    Cachin, C., Camenisch, J.L.: Optimistic fair secure computation. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: 20th Annual ACM Symposium on Theory of Computing, pp. 11–19. ACM Press, Chicago 2–4 May 1988Google Scholar
  7. 7.
    Chen, L., Kudla, C., Paterson, K.G.: Concurrent signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 287–305. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Cleve, R.: Limits on the security of coin flips when half the processors are faulty (extended abstract). In: Hartmanis, J. (ed.) Proceedings of the 18th Annual ACM Symposium on Theory of Computing, May 28–30, Berkeley, California, USA, pp. 364–369. ACM (1986)Google Scholar
  9. 9.
    El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  10. 10.
    Garay, J.A., Jakobsson, M., MacKenzie, P.D.: Abuse-free optimistic contract signing. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer, Heidelberg (1999)Google Scholar
  11. 11.
    Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource fairness and composability of cryptographic protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Girault, M., Poupard, G., Stern, J.: On the fly authentication and signature schemes based on groups of unknown order. J. Cryptology 19(4), 463–487 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Goldreich, O.: A simple protocol for signing contracts. In: Chaum, D. (ed.) CRYPTO 1983, pp. 133–136. Plenum Press, New York (1983)Google Scholar
  14. 14.
    Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  15. 15.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM Press, New York 25–27 May 1987Google Scholar
  16. 16.
    Goldwasser, S., Levin, L.A.: Fair computation of general functions in presence of immoral majority. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 77–93. Springer, Heidelberg (1991)Google Scholar
  17. 17.
    Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-party computation. In: Ladner, R.E., Dwork, C. (eds.) 40th Annual ACM Symposium on Theory of Computing, pp. 413–422. ACM Press, Victoria 17–20 May 2008Google Scholar
  18. 18.
    Horster, P., Petersen, H., Michels, M.: Meta-El-Gamal signature schemes. In: ACM CCS 94: 2nd Conference on Computer and Communications Security, pp. 96–107. ACM Press, Fairfax (1994)Google Scholar
  19. 19.
    Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)Google Scholar
  20. 20.
    Lindell, A.Y.: Legally-enforceable fairness in secure two-party computation. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 121–137. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In: Borowsky, E., Rajsbaum, S. (eds.) 22nd ACM Symposium Annual on Principles of Distributed Computing, pp. 12–19. Association for Computing Machinery, Boston 13–16 July 2003Google Scholar
  22. 22.
    Pinkas, B.: Fair secure two-party computation. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 87–105. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th Annual Symposium on Foundations of Computer Science, pp. 162–167. IEEE Computer Society Press, Toronto 27–29 October 1986Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Houda Ferradi
    • 1
  • Rémi Géraud
    • 1
  • Diana Maimuț
    • 1
  • David Naccache
    • 1
  • David Pointcheval
    • 1
  1. 1.École Normale SupérieureParis Cedex 05France

Personalised recommendations