Skip to main content

Conductive Filaments: Formation, Observation and Manipulation

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter C-AFM is used to induce and investigate conductive filaments at the nanometer scale. The conductive tip acts as a movable virtual top electrode on blanket samples. The sharp nanosized tip provides a sub-10 nm\(^2\) capacitor to investigate resistive switching (RS) at low-dimensions and low-current. In Sect. 4.1, the CFs are locally formed and their ON and OFF states studied. The role of the conductive tip, is investigated to tune the switching conditions and to achieve repeatable tip-induced RS operations, while matching devices’ functionality. Section 4.2 unravels the physical mechanisms of ultra-confined reset transitions observed for Cu- and \({V^{..}_o}\)-based filaments. A tunnel-barrier formation and a low-defects assisted QPC description is provided for the HRS filaments. Finally, in Sect. 4.3 some of the concepts introduced in Chap. 3 on scalpel SPM are applied to reverse engineer integrated devices and to probe their CFs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.H. Lee, C.S. Hwang, Resistive switching memory: observations with scanning probe microscopy. Nanoscale 3(2), 490–502 (2011)

    Article  ADS  Google Scholar 

  2. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO\(_3\). Nat. Mater. 5(4), 312–320 (2006)

    Google Scholar 

  3. R. Dittmann, R. Muenstermann, I. Krug, D. Park, T. Menke, J. Mayer, A. Besmehn, F. Kronast, C.M. Schneider, R. Waser, Scaling potential of local redox processes in memristive SrTiO\(_3\) thin-film devices. Proc. IEEE 100(6), 1979–1990 (2012)

    Google Scholar 

  4. J. Lee, M. Jo, D-j Seong, J. Shin, H. Hwang, Materials and process aspect of cross-point RRAM (invited). Microelectr. Eng. 88(7), 1113–1118 (2011)

    Google Scholar 

  5. Polspoel, W.: High resolution study of high—k layers using C-AFM. Ph.D. thesis, KU Leuven (2012)

    Google Scholar 

  6. R. Muenstermann, R. Dittmann, K. Szot, S. Mi, C-L. Jia, P. Meuffels, R. Waser, Realization of regular arrays of nanoscale resistive switching blocks in thin films of Nb-doped SrTiO\(_3\). Appl. Phys. Lett. 93(2), 023110 (2008)

    Google Scholar 

  7. R. Garcia, A.W. Knoll, E. Riedo, Advanced scanning probe lithography. Nat. Nanotechnol. 9(8), 577–587 (2014)

    Article  ADS  Google Scholar 

  8. Celano, U.: Evaluation of the electrical contact area in contact-mode scanning probe microscopy. J. Appl. Phys. (2015)

    Google Scholar 

  9. F. Peter, J. Kubacki, K. Szot, B. Reichenberg, R. Waser, Influence of adsorbates on the piezoresponse of KNbO 3. Physica Status Solidi (a) 203(3), 616–621 (2006)

    Article  ADS  Google Scholar 

  10. S. Kremmer, S. Peissl, C. Teichert, F. Kuchar, H. Hofer, Modification and characterization of thin silicon gate oxides using conducting atomic force microscopy. Mater. Sci. Eng. B 102(1–3), 88–93 (2003)

    Article  Google Scholar 

  11. W. Polspoel, P. Favia, J. Mody, H. Bender, W. Vandervorst, Physical degradation of gate dielectrics induced by local electrical stress using conductive atomic force microscopy. J. Appl. Phys. 106(2), 024101 (2009)

    Article  ADS  Google Scholar 

  12. M. Kopycinska-Müller, R.H. Geiss, D.C. Hurley, Contact mechanics and tip shape in AFM-based nanomechanical measurements. Ultramicroscopy 106(6), 466–474 (2006)

    Article  Google Scholar 

  13. S. Balatti, S. Ambrogio, Z. Wang, S. Sills, A. Calderoni, N. Ramaswamy, D. Ielmini, Pulsed cycling operation and endurance failure of metal-oxide resistive (RRAM), in IEDM Technical Digest, pp. 359–362 (2014)

    Google Scholar 

  14. A. Belmonte, A. Fantini, A. Redolfi, M. Houssa, M. Jurczak, L. Goux, Excellent Roff/Ron ratio and short programming time in Cu/Al\(_2\)O\(_3\)-based conductive-bridging RAM under low-current (10 \(\mu \)A) operation, in physica status solidi (a), 213(2), pp. 302–305, February (2016)

    Google Scholar 

  15. S. Larentis, F. Nardi, S. Balatti, D.C. Gilmer, D. Ielmini, Senior Student Member, Resistive switching by voltage-driven ion migration in bipolar RRAM—Part II : Modeling. IEEE Elect. Device Lett. 59(9), 2468–2475 (2012)

    Google Scholar 

  16. I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Electrochemical metallization memories-fundamentals, applications, prospects. Nanotechnology 22(25), 254003 (2011)

    Google Scholar 

  17. Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, L. Wei, Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012)

    Google Scholar 

  18. U. Celano, L. Goux, A. Belmonte, K. Opsomer, R. Degraeve, C. Detavernier, M. Jurczak, W. Vandervorst, Understanding the dual nature of the filament dissolution in conductive bridging devices. J. Phys. Chem. Lett. 1919–1924 (2015)

    Google Scholar 

  19. F. Klaus, Schuegraf and Chenming Hu. Hole Injection Si02 Breakdown Model for Very Low Voltage Lifetime Extrapolation. IEEE Trans. Electr. Devices 41(5), 761–767 (1994)

    Article  Google Scholar 

  20. F. De Stefano, V.V. Afanas’ev, M. Houssa, A. Stesmans, K. Opsomer, M. Jurczak, L. Goux, Control of metal/oxide electron barriers in CBRAM cells by low work-function liners. Microelectr.c Eng. 109, 156–159 (2013)

    Google Scholar 

  21. R. Degraeve, L. Ph Roussel, D.Wouters Goux, J. Kittl, L. Altimime, M. Jurczak, G. Groeseneken, Generic learning of TDDB applied to RRAM for improved understanding of conduction and switching mechanism through multiple filaments. IEDM Tech. Dig. IEEE Int. Electr. Devices Meeting 1, 632–635 (2010)

    Google Scholar 

  22. L. Goux, A. Fantini, G. Kar, Y. Chen, N. Jossart, R. Degraeve, S. Clima, B. Govoreanu, G. Lorenzo, G. Pourtois, D.J. Wouters, J.A. Kittl, L. Altimime, M. Jurczak, Ultralow sub-500 nA Operating Current High-performance TiN \(\backslash \) Al\(_2\)O\(_3\) \(\backslash \) HfO\(_2\) \(\backslash \) Hf \(\backslash \) TiN Bipolar RRAM Achieved Through Understanding-based Stack-engineering. pp. 159–160 (2012)

    Google Scholar 

  23. S. Long, M. Liu, X. Saura, E. Miranda, D. Jime, J.M. Rafi, F. Campabadal, J. Suñé, Threshold Switching and Conductance Quantization in Al/HfO\(_2\)/Si (p) Structures. Jpn. J. Appl. Phys. 52(4) (2013)

    Google Scholar 

  24. N. Raghavan, R. Degraeve, L. Goux, A. Fantini, D.J. Wouters, G. Groeseneken, M. Jurczak, RTN Insight to Filamentary Instability and Disturb Immunity in Ultra-Low Power Switching HfO x and AlO x RRAM 84(2012), 159–160 (2013)

    Google Scholar 

  25. F.M. Puglisi, L. Larcher, A. Padovani, P. Pavan, A complete statistical investigation of RTN in HfO\(_2\)-Based RRAM in High Resistive State. IEEE Trans. Electr. Devices 62(8), 2606–2613 (2015)

    Google Scholar 

  26. R. Degraeve, G. Groeseneken, R. Bellens, J.L. Ogier, M. Depas, P.J. Roussel, H.E. Maes, New insights in the relation between electron trap generation and the statistical properties of oxide breakdown. IEEE Trans. Electr. Devices 45(4), 904–911 (1998)

    Google Scholar 

  27. U. Celano, L. Goux, K. Opsomer, M. Iapichino, A. Belmonte, A. Franquet, I. Hoflijk, C. Detavernier, M. Jurczak, W. Vandervorst, Scanning Probe Microscopy as a scalpel to probe filament formation in conductive bridging memory devices. Microelectr. Eng. 120, 67–70 (2013). (in press)

    Google Scholar 

  28. U. Celano, Y.Y. Chen, D.J. Wouters, G. Groeseneken, M. Jurczak, W. Vandervorst, Filament observation in metal-oxide resistive switching devices. Appl. Phys. Lett. 102(12), 121602 (2013)

    Google Scholar 

  29. B. Singh, B.R. Mehta, D. Varandani, A.V. Savu, J. Brugger, CAFM investigations of filamentary conduction in Cu(2)O ReRAM devices fabricated using stencil lithography technique. Nanotechnology 23(49), 495707 (2012)

    Google Scholar 

  30. U. Celano, L. Goux, A. Belmonte, K. Opsomer, A. Franquet, A. Schulze, C. Detavernier, O. Richard, H. Bender, M. Jurczak, W. Vandervorst, Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices. Nano Lett. 14(5), 2401–2406 (2014)

    Google Scholar 

  31. U. Celano, W. Vandervorst, Scanning probe tomography for advanced material characterization, in 2014 IEEE International Integrated Reliability Workshop Final Report (IIRW), pp. 1–5 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Celano .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Celano, U. (2016). Conductive Filaments: Formation, Observation and Manipulation. In: Metrology and Physical Mechanisms in New Generation Ionic Devices. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-39531-9_4

Download citation

Publish with us

Policies and ethics