Walking in Place Through Virtual Worlds

  • Niels Christian NilssonEmail author
  • Stefania Serafin
  • Rolf Nordahl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9732)


Immersive virtual reality (IVR) is seemingly on the verge of entering the homes of consumers. Enabling users to walk through virtual worlds in a limited physical space presents a challenge. With an outset in a taxonomy of virtual travel techniques, we argue that Walking-in-Place (WIP) techniques constitute a promising approach to virtual walking in relation to consumer IVR. Subsequently we review existing approaches to WIP locomotion and highlight the need for a more explicit focus on the perceived naturalness of WIP techniques; i.e., the degree to which WIP locomotion feels like real walking. Finally, we summarize work we have performed in order to produce more natural WIP locomotion and present unexplored topics which need to be address if WIP techniques are to provide perceptually natural walking experiences.


Virtual reality Locomotion Walking-in-Place Perceived naturalness 


  1. 1.
    Bouguila, L., Florian, E., Courant, M., Hirsbrunner, B.: Active walking interface for human-scale virtual environment. In: 11th International Conference on Human-Computer Interaction, HCII. vol. 5, pp. 22–27. Citeseer (2005)Google Scholar
  2. 2.
    Bouguila, L., Iwashita, M., Hirsbrunner, B., Sato, M.: Virtual locomotion interface with ground surface simulation. In: Proceedings of the International Conference on Artificial Reality and Telexistence, Tokyo (2003)Google Scholar
  3. 3.
    Bowman, D.A., Kruijff, E., LaViola Jr., J.J., Poupyrev, I.: 3D User Interfaces: Theory and Practice. Addison-Wesley Professional, Reading (2004)Google Scholar
  4. 4.
    Bowman, D.A., McMahan, R.P., Ragan, E.D.: Questioning naturalism in 3D user interfaces. Commun. ACM 55(9), 78–88 (2012)CrossRefGoogle Scholar
  5. 5.
    Brooks Jr., F.P.: What’s real about virtual reality? IEEE Comput. Graph. Appl. 19(6), 16–27 (1999)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bruno, L., Pereira, J., Jorge, J.: A new approach to walking in place. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013, Part III. LNCS, vol. 8119, pp. 370–387. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Cakmak, T., Hager, H.: Cyberith virtualizer: A locomotion device for virtual reality. In: ACM SIGGRAPH 2014 Emerging Technologies. p. 6. ACM (2014)Google Scholar
  8. 8.
    Darken, R., Cockayne, W., Carmein, D.: The omni-directional treadmill: A locomotion device for virtual worlds. In: Proceedings of the 10th annual ACM symposium on user interface software and technology. pp. 213–221. ACM (1997)Google Scholar
  9. 9.
    Feasel, J., Whitton, M., Wendt, J.: Llcm-wip: Low-latency, continuous-motion walking-in-place. In: Proceedings of the 2008 IEEE Symposium on 3D User Interfaces. pp. 97–104. IEEE (2008)Google Scholar
  10. 10.
    Kim, J., Gracanin, D., Quek, F.: Sensor-fusion walking-in-place interaction technique using mobile devices. In: 2012 IEEE Virtual Reality Short Papers and Posters. pp. 39–42. IEEE (2012)Google Scholar
  11. 11.
    Kokkinara, E., Slater, M.: Measuring the effects through time of the influence of visuomotor and visuotactile synchronous stimulation on a virtual body ownership illusion. Perception 43(1), 43–58 (2014)CrossRefGoogle Scholar
  12. 12.
    Langbehn, E., Eichler, T., Ghose, S., von Luck, K., Bruder, G., Steinicke, F.: Evaluation of an omnidirectional walking-in-place user interface with virtual locomotion speed scaled by forward leaning angle. In: Proceedings of the GI Workshop on Virtual and Augmented Reality (GI VR/AR). pp. 149–160 (2015)Google Scholar
  13. 13.
    Medina, E., Fruland, R., Weghorst, S.: Virtusphere: Walking in a human size VR hamster ball. In: Proceedings of the Human Factors and Ergonomics Society AnnualMeeting. vol. 52, pp. 2102–2106. SAGE Publications (2008)Google Scholar
  14. 14.
    Nilsson, N., Serafin, S., Laursen, M.H., Pedersen, K.S., Sikström, E., Nordahl, R.: Tapping-in-place: Increasing the naturalness of immersive walking-in-place locomotion through novel gestural input. In: Proceedings of the 2013 IEEE Symposium on 3D User Interfaces. IEEE (2013)Google Scholar
  15. 15.
    Nilsson, N., Serafin, S., Nordahl, R.: The perceived naturalness of virtual locomotion methods devoid of explicit leg movements. In: Proceedings of Motion in Games. ACM (2013)Google Scholar
  16. 16.
    Nilsson, N.C.: Walking Without Moving: An exploration of factors influencing the perceived naturalness of Walking-in-Place techniques for locomotion in virtual environments. Ph.D. thesis, Aalborg University Copenhagen (2016)Google Scholar
  17. 17.
    Nilsson, N.C., Serafin, S., Nordahl, R.: Establishing the range of perceptually natural visual walking speeds for virtual walking-in-place locomotion. vol. 20, pp. 569–578. IEEE (2014)Google Scholar
  18. 18.
    Nilsson, N.C., Serafin, S., Nordahl, R.: The influence of step frequency on the range of perceptually natural visual walking speeds during walking-in-place and treadmill locomotion. In: Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology. pp. 187–190. ACM (2014)Google Scholar
  19. 19.
    Nilsson, N.C., Serafin, S., Nordahl, R.: The effect of head mounted display weight and locomotion method on the perceived naturalness of virtual walking speeds. In: Virtual Reality (VR), pp. 249–250, IEEE (2015)Google Scholar
  20. 20.
    Nilsson, N.C., Serafin, S., Nordahl, R.: The effect of visual display properties and gain presentation mode on the perceived naturalness of virtual walking speeds. In: Virtual Reality (VR), IEEE 2015, pp. 81–88. IEEE (2015)Google Scholar
  21. 21.
    Slater, M.: Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1535), 3549–3557 (2009)CrossRefGoogle Scholar
  22. 22.
    Slater, M., Usoh, M., Steed, A.: Taking steps: the influence of a walking technique on presence in virtual reality. ACM Trans. Comput.-Hum. Interact. 2(3), 201–219 (1995)CrossRefGoogle Scholar
  23. 23.
    Slater, M., Usoh, M.: Body centred interaction in immersive virtual environments. Artif. Life Virtual Reality 1, 125–148 (1994)Google Scholar
  24. 24.
    Steinicke, F., Visell, Y., Campos, J., Lécuyer, A.: Human Walking in Virtual Environments: Perception, Technology, and Applications. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Suma, E., Bruder, G., Steinicke, F., Krum, D., Bolas, M.: A taxonomy for deploying redirection techniques in immersive virtual environments. In: 2012 IEEE Virtual Reality Short Papers and Posters. pp. 43–46. IEEE (2012)Google Scholar
  26. 26.
    Swapp, D., Williams, J., Steed, A.: The implementation of a novel walking interface within an immersive display. In: Proceedings of the 2010 IEEE Symposium on 3D User Interfaces. pp. 71–74. IEEE (2010)Google Scholar
  27. 27.
    Templeman, J., Denbrook, P., Sibert, L.: Virtual locomotion: Walking in place through virtual environments. Presence 8(6), 598–617 (1999)CrossRefGoogle Scholar
  28. 28.
    Templeman, J.N., Sibert, L.E., Page, R.C., Denbrook, P.S.: Immersive simulation to train urban infantry combat. Technical report, DTIC Document (2006)Google Scholar
  29. 29.
    Usoh, M., Arthur, K., Whitton, M., Bastos, R., Steed, A., Slater, M., Brooks Jr., F.: Walking > walking-in-place > flying, in virtual environments. In: Proceedings of the 26th annual conference on Computer Graphics and Interactive Techniques. pp. 359–364. ACM Press/Addison-Wesley Publishing Co. (1999)Google Scholar
  30. 30.
    Wendt, J.: Real-walking models improve walking-in-place systems. Ph.D. thesis, University of North Carolina at Chapel Hill (2010)Google Scholar
  31. 31.
    Wendt, J., Whitton, M., Brooks, F.: Gud wip: Gait-understanding-driven walking-in-place. In: Proceedings of the 2010 IEEE Virtual Reality Conference. pp. 51–58. IEEE (2010)Google Scholar
  32. 32.
    Whitton, M.C., Razzaque, S.: Locomotion interfaces case study (2008)Google Scholar
  33. 33.
    Williams, B., Bailey, S., Narasimham, G., Li, M., Bodenheimer, B.: Evaluation of walking in place on a wii balance board to explore a virtual environment. Proc. ACM Trans. Appl. Percept. 8(3), 19 (2011)Google Scholar
  34. 34.
    Williams, B., McCaleb, M., Strachan, C., Zheng, Y.: Torso versus gaze direction to navigate a ve by walking in place. In: Proceedings of the ACM Symposium on Applied Perception, 67–70. ACM (2013)Google Scholar
  35. 35.
    Zielinski, D., McMahan, R., Brady, R.: Shadow walking: An unencumbered locomotion technique for systems with under-floor projection. In: Proceedings of the 2011 IEEE Virtual Reality Conference, pp. 167–170. IEEE (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Niels Christian Nilsson
    • 1
    Email author
  • Stefania Serafin
    • 1
  • Rolf Nordahl
    • 1
  1. 1.Aalborg University CopenhagenCopenhagenDenmark

Personalised recommendations