Can I Reach that? An Affordance Based Metric of Human-Sensor-Robot System Effectiveness

  • Taylor MurphyEmail author
  • Alexander M. Morison
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9731)


A person’s ability to perceive and act fluently in a remote environment through teleoperation of a robotic platform is clearly limited when compared to acting directly in an immediate environment. Despite the contrast between teleoperation and direct action, there are few metrics in the human robot interaction literature that are sensitive to these differences. Existing human-robot assessment studies rely on observational accounts and studies that simulate domain tasks, then applying ad hoc metrics to assess performance. These metrics are typically properties of the task like completion time, number of targets found, and operator mental workload. This study introduces a formal method and metric based on the perception of affordances. The study assesses a human-robot systems ability to perceive the reachability of an object using a mechanical arm. Affordance-based metrics are a new tool to quantify the effectiveness of different teleoperated sensor-robot systems designs.


Human-Robot interaction Psychometrics Psychophysics Visual perception Remote perception Affordance Human-sensor-robot system Ecological perception Teleoperation Reachability Simulation 


  1. 1.
    Morison, A., Woods, D.D., Murphy, T.B.: Human-robot interaction as extending human perception to new scales. In: Hoffman, R.R., Hancock, P.A., Scerbo, M., Parasuraman, R., Szalma, J.R. (eds.) Handbook of Applied Perception Research, vol. 2, pp. 848–868. Cambridge University Press, New York (2015)CrossRefGoogle Scholar
  2. 2.
    Fong, T., Kaber, D., Lewis, M., Scholtz, J., Schultz, A., Steinfeld, A.: Common metrics for human-robot interaction. In: IEEE International Conference on Intelligent Robots and Systems (2004). doi: 10.1145/1121241.1121249
  3. 3.
    Burke, J.L., Murphy, R.R., Rogers, E., Lumelsky, V.J., Scholtz, J.: Final report for the DARPA/NSF interdisciplinary study on human – robot interaction. IEEE Trans. Syst. Man Cybern. - Part C: Appl. Rev. 34(2), 103–112 (2004)CrossRefGoogle Scholar
  4. 4.
    Gibson, J.J.: The theory of information pickup and its consequences. In: The Ecological Approach to Visual Perception, pp. 238–263. Houghton Mifflin, Boston (1979)Google Scholar
  5. 5.
    Heft, H.: A methodological note on overestimates of reaching distance: distinguishing between perceptual and analytical judgments. Ecol. Psychol. 5(3), 255–271 (1993). doi: 10.1207/s15326969eco0503 CrossRefGoogle Scholar
  6. 6.
    Warren, W.H., Whang, S.: Visual guidance of walking through apertures: body-scaled information for affordances. J. Exp. Psychol. Hum. Percept. Perform. 13(3), 371–383 (1987). doi: 10.1037/0096-1523.13.3.371 CrossRefGoogle Scholar
  7. 7.
    Mark, L.S., Nemeth, K., Gardner, D., Dainoff, M.J., Paasche, J., Duffy, M., Grandt, K.: Postural dynamics and the preferred critical boundary for visually guided reaching. J. Exp. Psychol. Hum. Percept. Perform. 23(5), 1365–1379 (1997)CrossRefGoogle Scholar
  8. 8.
    Carello, C., Grosofsky, A., Reichel, F.D., Turvey, M.T.: Visually perceiving what is reachable. Ecol. Psychol. 1(1), 27–54 (1989)CrossRefGoogle Scholar
  9. 9.
    Casper, J., Murphy, R.R.: Human-robot interactions during the robot-assisted urban search and rescue response at the world trade center. IEEE Trans. Syst. Man Cybern. - Part B: Cybern. 33(3), 367–385 (2003)CrossRefGoogle Scholar
  10. 10.
    Drury, J., Scholtz, J., Yanco, H.: Awareness in human-robot interactions. In: Proceedings of IEEE International Conference Systems, Man, Cybernetics, vol. 1, pp. 912–918 (2003)Google Scholar
  11. 11.
    Gibson, J.J.: The Ecological Approach to Visual Perception. Lawrence Erlbaum Associates, Hillsdale (1986)Google Scholar
  12. 12.
    Warren, W.H.: Perceiving affordances: visual guidance of stair climbing. J. Exp. Psychol. Hum. Percept. Perform. 10(5), 683–703 (1984). doi: 10.1037/0096-1523.10.5.683 CrossRefGoogle Scholar
  13. 13.
    Treutwein, B., Strasburger, H.: Fitting the psychometric function. Percept. Psychophys. 61(1), 87–106 (1999). doi: 10.3758/BF03211951 CrossRefGoogle Scholar
  14. 14.
    Moore, K.S., Gomer, J.A., Pagano, C.C., Moore, D.D.: Perception of robot passability with direct line of sight and teleoperation. Hum. Factors 51(4), 557–570 (2009). doi: 10.1177/0018720809341959 CrossRefGoogle Scholar
  15. 15.
    Jones, K.S., Johnson, B.R., Schmidlin, E.A.: Teleoperation through apertures: passability versus driveability. J. Cogn. Eng. Decis. Mak. 5(1), 10–28 (2011).
  16. 16.
    Levitt, H.: Transformed up-down methods in psychoacoustics. J. Acoust. Soc. Am. 49, 467–477 (1971)CrossRefGoogle Scholar
  17. 17.
    García-Pérez, M.A.: Yes-No staircases with fixed step sizes: psychometric properties and optimal setup. Optom. Vis. Sci. 78(1), 56–64 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Industrial System EngineeringOhio State UniversityColumbusUSA

Personalised recommendations