Personalization in the User Interaction Design

Isn’t Personalization Just the Adjustment According to Defined User Preferences?
  • Miroslav SiliEmail author
  • Markus Garschall
  • Martin Morandell
  • Sten Hanke
  • Christopher Mayer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9731)


User diversity plays an essential role in the design of modern Human Computer Interaction (HCI) systems. Users differ among their perception and utilization of technology. Thus, designers of modern Information and Communication Technologies (ICT) systems are asked to consider these aspects and to build interaction systems which are able to support and react to changing user wishes and needs. This work focuses on the identification and elaboration of this additional user-related and contextual information and facilitates to structure the design process of new user-adaptive systems. Based on a comprehensive literature review this work presents methods, tools and systems used to pre and post process user- and context-related information as well as different approaches for the adaption decision process. Additionally, based on a set of selected systems the work illustrates the adaption process.


Personalization User Modeling Preferences Context-aware Adaptivity Adaption Decision Process 



Much of the work reported here was within the international project YouDo which is co-funded by the AAL Joint Programme (REF. AAL-2012-5-155) and the following National Authorities and R&D programs in Austria, Germany and Switzerland: BMVIT, program benefit, FFG (AT), BMBF (DE) and SERI (CH).


  1. 1.
    Coutand, O.: A Framework for Contextual Personalised Applications. Diss Kassel University Press GmbH, Kassel (2009)Google Scholar
  2. 2.
    Jameson, A.: Systems that adapt to their users. Decis. Making 2, 23 (2011)MathSciNetGoogle Scholar
  3. 3.
    Weibelzahl, S.: Evaluation of Adaptive Systems. Springer, Heidelberg (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Mayer, C., et al.: A comparative study of systems for the design of flexible user interfaces. J. Ambient Intell. Smart Environ. (2015). (in press)Google Scholar
  5. 5.
    Sili, M., Bobeth, J., Sandner, E., Hanke, S., Schwarz, S., Mayer, C.: Talking faces in lab and field trials. In: Zhou, J., Salvendy, G. (eds.) ITAP 2015. LNCS, vol. 9193, pp. 134–144. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  6. 6.
    Fink, J., et al.: A review and analysis of commercial user modeling servers for personalization on the world wide web. User Model. User-Adap. Interact. 10(2-3), 209–249 (2000)CrossRefGoogle Scholar
  7. 7.
    Mayer, C., Morandell, M., Gira, M., Hackbarth, K., Petzold, M., Fagel, S.: AALuis, a user interface layer that brings device independence to users of AAL systems. In: Miesenberger, K., Karshmer, A., Penaz, P., Zagler, W. (eds.) ICCHP 2012, Part I. LNCS, vol. 7382, pp. 650–657. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    ISO/IEC, ISO/IEC 24752, Information technology – user interfaces – universal remote console, Part 1: Framework, First edition, Technical report (2008)Google Scholar
  9. 9.
    Vanderheiden, G., et al.: Use of user interface sockets to create naturally evolving intelligent environments. In: Proceedings of the 11th International Conference on Human-Computer Interaction (2005)Google Scholar
  10. 10.
    Hanke, S., Mayer, C., Hoeftberger, O., Boos, H., Wichert, R., Tazari, M.-R., Wolf, P., Furfari, F.: universAAL – An Open and Consolidated AAL Platform. In: Wichert, R., Eberhardt, B. (eds.) Ambient Assisted Living. Non-series, vol. 63, pp. 127–140. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Fischer, G.: User modeling in human–computer interaction. User Model. User-Adap. Interact. 11(1-2), 65–86 (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Brusilovsky, P., Millán, E.: User models for adaptive hypermedia and adaptive educational systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 3–53. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Muhammad, A., et al.: Research issues in personalization of mobile services. Int. J. Inf. Eng. Electron. Bus. 4(4) (2012)Google Scholar
  14. 14.
    Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.: User profiles for personalized information access. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 54–89. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Bozdag, E.: Bias in algorithmic filtering and personalization. Ethics Inf. Technol. 15(3), 209–227 (2013)CrossRefGoogle Scholar
  16. 16.
    Kelly, D., et al.: Implicit feedback for inferring user preference: a bibliography. ACM SIGIR Forum 37(2), 18–28 (2003)Google Scholar
  17. 17.
    OWL – Semantic Web Standards, W3C (2013). Web. 03 Feb 2016
  18. 18.
    RDF – Semantic Web Standards, W3C (2014). Web. 03 Feb 2016
  19. 19.
    Nurmi, P., et al.: A system for context-dependent user modeling. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278, pp. 1894–1903. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Vanderheiden, G., et al.: The global public inclusive infrastructure, Cloud4all and Prosperity4all. Assistive Technol. Res. Pract. 33, 417–422 (2013)Google Scholar
  21. 21.
    Dey, A.K.: Providing architectural support for building context-aware applications. Diss. Georgia Institute of Technology (2000)Google Scholar
  22. 22.
    Jong-yi, H., et al.: Context-aware systems: a literature review and classification. Expert Syst. Appl. 36(4), 8509–8522 (2009)CrossRefGoogle Scholar
  23. 23.
    Baldauf, M., et al.: A survey on context-aware systems. Int. J. Ad Hoc Ubiquitous Comput. 2(4), 263–277 (2007)CrossRefGoogle Scholar
  24. 24.
    Schmidt, R., et al.: Cased-based reasoning for medical knowledge-based systems. Int. J. Med. Inf. 64(2), 355–367 (2001)CrossRefGoogle Scholar
  25. 25.
    Bellman, R.E., et al.: Decision-making in a fuzzy environment. Manage. Sci. 17, 141–164 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ghosh, R., et al.: Discovering user profiles. In: Proceedings of the 18th International Conference on World Wide Web, pp. 1233–1234 (2009)Google Scholar
  27. 27.
    Ghosh, R., et al.: Mashups for semantic user profiles. In: Proceedingd 17th International World Wide Web Conference, Beijing (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Miroslav Sili
    • 1
    Email author
  • Markus Garschall
    • 2
  • Martin Morandell
    • 1
  • Sten Hanke
    • 1
  • Christopher Mayer
    • 1
  1. 1.Health and Environment Department, Biomedical SystemsAIT Austrian Institute of Technology GmbHViennaAustria
  2. 2.Innovation Systems, Technology ExperienceAIT Austrian Institute of Technology GmbHViennaAustria

Personalised recommendations