Skip to main content

Spacetime as Described by EFT

  • Chapter
  • First Online:
Effective Spacetime
  • 1063 Accesses

Abstract

This chapter examines the idea of treating GR as an EFT, and, drawing from the ideas presented in the previous chapters (Chaps. 24), explores what we might learn of emergent spacetime through the framework of EFT. Examples of both top–down and bottom–up EFT are considered; the former case is represented by analogue models of (and for) gravity, which describe spacetime (an effective curved geometry, to be more precise) as emergent from a condensed-matter system at high-energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Bain (2008, 2013); Crowther (2013); Dardashti et al. (Forthcoming).

  2. 2.

    See Barceló et al. (2011) for a review. The earliest instance the authors identify is Gordon’s 1923 use of an effective gravitational metric field to mimic a dielectric medium. A later example is Unruh’s “Experimental black hole radiation” (1981), which used an analogue model based on fluid flow to explore Hawking radiation from actual GR black holes. Barceló et al. (2011), p. 42 present this example as being the start of what they call the “modern era” of analogue models.

  3. 3.

    See Footnote 2.

  4. 4.

    Since here I am concerned with emergent spacetime, I will not Volovik’s model’s replication of the standard model in any detail.

  5. 5.

    In particular, the A-phase of \(^{3}{\mathrm {He}}{}\) is characterised by pairs of \(^{3}{\mathrm {He}}{}\) atoms spinning about anti-parallel axes that are perpendicular to the plane of their orbit. See Volovik (2003) or the short review in Bain (2008).

  6. 6.

    For details see Volovik (2003, pp. 82, 96). This summary follows Bain (2008, pp. 309–311).

  7. 7.

    Barceló et al. (2001), Hu (2009), Visser (2008), Volovik (2003).

  8. 8.

    The idea of background independence is discussed further in the next chapter (Sect. 6.4).

  9. 9.

    These include considering the Planck temperature (1032 K) as “low temperature”, given that BECs only exist at very low temperatures and spacetime is supposed to exist at this temperature in the early universe, for example.

  10. 10.

    The gravitational coupling constant (Newton’s constant), G, has mass dimension \(-2\) in units where \(\hbar =c=1\), recalling from footnote (10) this means that we expect conventional perturbative QFT to be applicable only for energies \(E^2\ll 1/G\).

  11. 11.

    Burgess (2004); Donoghue (1994, 1997).

  12. 12.

    Following Weinberg (2009).

  13. 13.

    This sentiment is also expressed by many proponents of so-called “discrete” approaches to quantum gravity, as discussed in the next chapter.

  14. 14.

    This is similar to QCD, except that QCD is also asymptotically free, having a fixed point of zero; usually, in asymptotic safety, the fixed point is finite, but not zero.

  15. 15.

    And so accords with the philosophy of “effective EFT”.

  16. 16.

    This explanation is based on Niedermaier and Reuter (2006), Percacci (2009).

  17. 17.

    For a brief overview, see Percacci (2009).

  18. 18.

    Weinberg (1979), Kawai et al. (1993), Kawai et al. (1996), Niedermaier (2003), Niedermaier (2010).

  19. 19.

    Smolin (1982), Percacci and Perini (2003), Percacci (2006).

  20. 20.

    Ambjørn et al. (2004, 2005).

  21. 21.

    Reuter and Saueressig (2002); Reuter and Weyer (2009); Lauscher and Reuter (2002); Codello and Percacci (2006). For an extended list of references see Weinberg (2009).

  22. 22.

    However, recall from discussion in Chap. 1 that there is more to recovering GR than simply an emergent metric and an effective dynamics for spacetime, and it is not clear that these models are capable of representing these extra features, see Carlip (2014).

References

  • Ambjørn, J., Jurkiewicz, J., & Loll, R. (2004). Emergence of a 4d world from causal quantum gravity. Physical Review Letters, 93(13).

    Google Scholar 

  • Ambjørn, J., Jurkiewicz, J., & Loll, R. (2005). Reconstructing the universe. Physical Review D, 72(6).

    Google Scholar 

  • Bain, J. (2008). Condensed matter physics and the nature of spacetime. In D. Dieks (Ed.), The ontology of spacetime II, chap. 16 (pp. 301–329). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Bain, J. (2013). The emergence of spacetime in condensed matter approaches to quantum gravity. Studies in History and Philosophy of Modern Physics, 44, 338–345.

    Article  MathSciNet  MATH  Google Scholar 

  • Barceló, C., Visser, M., & Liberati, S. (2001). Einstein gravity as an emergent phenomenon? International Journal of Modern Physics D, 10(6), 799–806.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Barceló, C., Liberati, S., & Visser, M. (2011). Analogue gravity. Living Reviews in Relativity. http://www.livingreviews.org/lrr-2011-3.

  • Burgess, C. P. (2004). Quantum gravity in everyday life: General relativity as an effective field theory. Living Reviews in Relativity. www.livingreviews.org/lrr-2004-5.

  • Carlip, S. (2014). Challenges for emergent gravity. Studies in History and Philosophy of Modern Physics, 46, 200–208.

    Google Scholar 

  • Codello, A., & Percacci, R. (2006). Fixed points of higher-derivative gravity. Physical Review Letters, 97(22).

    Google Scholar 

  • Crowther, K. (2013). Emergent spacetime according to effective field theory: From top-down and bottom-up. Studies in History and Philosophy of Modern Physics, 44(3), 321–328.

    Article  MathSciNet  MATH  Google Scholar 

  • Dardashti, R., Thébault, K., & Winsberg, E. (Forthcoming). Confirmation via analogue simulation: what dumb holes could tell us about gravity. British Journal for the Philosophy of Science.

    Google Scholar 

  • Donoghue, J. (1994). General relativity as an effective field theory: The leading quantum corrections. Physical Review D, 50, 3874–3888.

    Article  ADS  Google Scholar 

  • Donoghue, J. (1997). Introduction to the effective field theory description of gravity. In F. Cornet & M. Herrero (Eds.), Advanced school on effective theories: Almunecar, Granada, Spain 26 June–1 July 1995 (pp. 217–240). Singapore: World Scientific.

    Google Scholar 

  • Georgi, H. (1993). Effective-field theory. Annual Review of Nuclear and Particle Science, 43, 209–252.

    Google Scholar 

  • Hartmann, S. (2001). Effective field theories, reductionism and scientific explanation. Studies in History and Philosophy of Modern Physics, 32(2), 267–301.

    Article  MathSciNet  MATH  Google Scholar 

  • Hu, B.-L. (1999). Stochastic gravity. International Journal of Theoretical Physics, 38, 2987.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hu, B.-L. (2002). A kinetic theory approach to quantum gravity. International Journal of Theoretical Physics, 41, 2091–2119.

    Article  MathSciNet  MATH  Google Scholar 

  • Hu, B.-L. (2005). Can spacetime be a condensate? International Journal of Theoretical Physics, 44(10), 1785–1806.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hu, B.-L. (2009). Emergent/quantum gravity: macro/micro structures of spacetime. In H. T. Elze, L. Diosi, L. Fronzoni, J. Halliwell, & G. Vitiello (Eds.), Fourth international workshop dice 2008: From quantum mechanics through complexity to spacetime: the role of emergent dynamical structures (Vol. 174, pp. 12015–12015). Journal of physics conference series. Bristol: Iop Publishing Ltd.

    Google Scholar 

  • Hu, B. L., & Verdaguer, E. (2008). Stochastic gravity: Theory and applications. Living Reviews in Relativity, 11. http://www.livingreviews.org/lrr-2008-3.

  • Kawai, H., Kitazawa, Y., & Ninomiya, M. (1993). Scaling exponents in quantum-gravity near 2 dimensions. Nuclear Physics B, 393(1–2), 280–300.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kawai, H., Kitazawa, Y., & Ninomiya, M. (1996). Renormalizability of quantum gravity near two dimensions. Nuclear Physics B, 467(1–2), 313–331.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lauscher, O., & Reuter, M. (2002). Ultraviolet fixed point and generalized flow equation of quantum gravity. Physical Review D, 65(2).

    Google Scholar 

  • Mattingly, J. (2009). Mongrel gravity. Erkenntnis, 70(3), 379–395.

    Article  MathSciNet  Google Scholar 

  • Nambu, Y. (2008). Nobel lecture. Nobelprize.org. http://nobelprize.org/nobel_prizes/physics/laureates/2008/nambu-lecture.html.

  • Niedermaier, M. (2003). Dimensionally reduced gravity theories are asymptotically safe. Nuclear Physics B, 673(1–2), 131–169.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Niedermaier, M. (2010). Gravitational fixed points and asymptotic safety from perturbation theory. Nuclear Physics B, 833(3), 226–270.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Niedermaier, M., & Reuter, M. (2006). The asymptotic safety scenario in quantum gravity. http://www.livingreviews.org/lrr-2006-5.

  • Percacci, R. (2006). Further evidence for a gravitational fixed point. Physical Review D, 73(4).

    Google Scholar 

  • Percacci, R. (2009). Asymptotic safety. In D. Oriti (Ed.), Approaches to quantum gravity: towards a new understanding of space, time and matter (pp. 111–128). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Percacci, R., & Perini, D. (2003). Constraints on matter from asymptotic safety. Physical Review D, 67(8).

    Google Scholar 

  • Reuter, M., & Saueressig, F. (2002). Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation. Physical Review D, 65(6).

    Google Scholar 

  • Reuter, M., & Weyer, H. (2009). Background independence and asymptotic safety in conformally reduced gravity. Physical Review D, 79(10).

    Google Scholar 

  • Sakharov, A. (1967). Vacuum quantum fluctuations in curved space and the theory of gravitation. Doklady Akadmii Nauk SSSR, 177, 70–71.

    ADS  MathSciNet  Google Scholar 

  • Sindoni, L. (2011). Emergent gravitational dynamics from multi-bose-einstein-condensate hydrodynamics? Physical Review D, 83(2), 024022.

    Article  ADS  Google Scholar 

  • Sindoni, L., Girelli, F., & Liberati, S. (2009). Emergent gravitational dynamics in bose-einstein condensates. In J. Kowalski Glikman, R. Durka, & M. Szczachor (Eds.), Planck scale (Vol. 1196, pp. 258–265). AIP conference proceedings.

    Google Scholar 

  • Smolin, L. (1982). A fixed-point for quantum-gravity. Nuclear Physics B, 208(3), 439–466.

    Article  ADS  Google Scholar 

  • Unruh, W. (1981). Experimental black-hole evaporation? Physical Review Letters, 46, 1351–1358.

    Article  ADS  Google Scholar 

  • Visser, M. (2008). Emergent rainbow spacetimes: Two pedagogical examples. arXiv:gr-qc/0712.0810v2.

  • Volovik, G. (2001). Superfluid analogies of cosmological phenomena. Physics Reports, 351(4), 195–348.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Volovik, G. (2003). The universe in a helium droplet. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Weinberg, S. (1979). Ultraviolet divergencies in quantum theories of gravitation. In S. Hawking & W. Israel (Eds.), General relativity, an Einstein centenary survey (pp. 790–831). Cambridge: Cambridge University Press.

    Google Scholar 

  • Weinberg, S. (2009). Effective field theory, past and future. arXiv:hep-th/0908.1964v3.

  • Wüthrich, C. (2012). The structure of causal sets. Journal for General Philosophy of Science, 43(2), 223–241.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Crowther .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Crowther, K. (2016). Spacetime as Described by EFT. In: Effective Spacetime. Springer, Cham. https://doi.org/10.1007/978-3-319-39508-1_5

Download citation

Publish with us

Policies and ethics