Skip to main content

Microbial Manipulation Host Dark Matter

  • Chapter
  • First Online:
Non-coding RNAs and Inter-kingdom Communication

Abstract

In 2010, Francis Collins, director of the NIH, referenced the transcribed yet untranslated component of the human genome as ‘dark matter’, a term often used by astrophysicists to describe the vast quantities of invisible hypothetical matter known to make up the majority of our universe. Since then, geneticists have set out to shed light on this matter with remarkable success, in an array of biological contexts ranging from cancer to developmental biology. In recent years, rapid advances have been made towards uncovering the functional biological roles of long noncoding RNAs (lncRNAs), which have been estimated to represent 70–90 % of mammalian genomic dark matter. It has become increasingly evident that the primary function of our noncoding genome is to regulate the coding genome. This makes genomic dark matter an attractive evolutionary target for pathogens, who need to alter the cellular host environment in order to promote their survival and propagation. In this review, we focus on the constituents of the mammalian genomic dark matter that are manipulated by viral and microbial pathogens. We also dive deeper into the involvement of ncRNAs, including enhancer RNAs (eRNAs), in the innate immune response against intracellular pathogens. This commentary further highlights how dark and abstruse our noncoding genome still is, particularly in the context of infection biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman ME, Dugast AS, Alter G (2012) Emerging concepts on the role of innate immunity in the prevention and control of HIV infection. Annu Rev Med 63:113–130. doi:10.1146/annurev-med-050310-08522

  • Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao X, Schmidl C, Suzuki T, Ntini E, Arner E, Valen E, Li K, Schwarzfischer L, Glatz D, Raithel J, Lilje B, Rapin N, Bagger FO, Jorgensen M, Andersen PR, Bertin N, Rackham O, Burroughs AM, Baillie JK, Ishizu Y, Shimizu Y, Furuhata E, Maeda S, Negishi Y, Mungall CJ, Meehan TF, Lassmann T, Itoh M, Kawaji H, Kondo N, Kawai J, Lennartsson A, Daub CO, Heutink P, Hume DA, Jensen TH, Suzuki H, Hayashizaki Y, Muller F, Forrest AR, Carninci P, Rehli M, Sandelin A (2014) An atlas of active enhancers across human cell types and tissues. Nature 507(7493):455–461. doi:10.1038/nature1278

  • Arbibe L, Kim DW, Batsche E, Pedron T, Mateescu B, Muchardt C, Parsot C, Sansonetti PJ (2007) An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses. Nat Immunol 8(1):47–56

    Google Scholar 

  • Atianand MK, Fitzgerald KA (2014) Long non-coding RNAs and control of gene expression in the immune system. Trends Mol Med 20(11):623–631. doi:10.1016/j.molmed.2014.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aune TM, Spurlock CF 3rd (2016) Long non-coding RNAs in innate and adaptive immunity. Virus Res 212:146–160. doi:10.1016/j.virusres.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  • Banerji J, Rusconi S, Schaffner W (1981) Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 27(2 Pt 1):299–308

    Article  CAS  PubMed  Google Scholar 

  • Barichievy S, Naidoo J, Mhlanga MM (2015) Non-coding RNAs and HIV: viral manipulation of host dark matter to shape the cellular environment. Front Genet 6:108. doi:10.3389/fgene.2015.00108

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown JD, Lin CY, Duan Q, Griffin G, Federation AJ, Paranal RM, Bair S, Newton G, Lichtman AH, Kung AL, Yang T, Wang H, Luscinskas FW, Croce KJ, Bradner JE, Plutzky J (2014) NF-kappaB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol Cell 56(2):219–231. doi:10.1016/j.molcel.2014.08.02

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchler NE, Gerland U, Hwa T (2003) On schemes of combinatorial transcription logic. Proc Natl Acad Sci USA 100(9):5136–5141. doi:10.1073/pnas.0930314100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bukong TN, Hall WW, Jacque JM (2010) Lentivirus-associated MAPK/ERK2 phosphorylates EMD and regulates infectivity. J Gen Virol 91(Pt 9):2381–2392. doi:10.1099/vir.0.019604-0

    Article  CAS  PubMed  Google Scholar 

  • Bulger M, Groudine M (2010) Enhancers: the abundance and function of regulatory sequences beyond promoters. Dev Biol 339(2):250–257. doi:10.1016/j.ydbio.2009.11.035

    Article  CAS  PubMed  Google Scholar 

  • Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927. doi:10.1101/gad.17446611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter S (2016) Long noncoding RNA: novel links between gene expression and innate immunity. Virus Res 212:137–145. doi:10.1016/j.virusres.2015.08.019

    Article  CAS  PubMed  Google Scholar 

  • Carpenter S, Aiello D, Atianand MK, Ricci EP, Gandhi P, Hall LL, Byron M, Monks B, Henry-Bezy M, Lawrence JB, O’Neill LA, Moore MJ, Caffrey DR, Fitzgerald KA (2013) A long noncoding RNA mediates both activation and repression of immune response genes. Science 341(6147):789–792. doi:10.1126/science.1240925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157(1):77–94. doi:10.1016/j.cell.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  • Chan J, Atianand M, Jiang Z, Carpenter S, Aiello D, Elling R, Fitzgerald KA, Caffrey DR (2015) Cutting edge: a natural antisense transcript, AS-IL1alpha, controls inducible transcription of the proinflammatory Cytokine IL-1alpha. J Immunol 195(4):1359–1363. doi:10.4049/jimmunol.1500264

    Article  CAS  PubMed  Google Scholar 

  • Chang CF, D’Souza WN, Ch’en IL, Pages G, Pouyssegur J, Hedrick SM (2012) Polar opposites: Erk direction of CD4 T cell subsets. J Immunol 189(2):721–731. doi:10.4049/jimmunol.1103015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410(6824):37–40. doi:10.1038/35065000

    Article  CAS  PubMed  Google Scholar 

  • Collins SE, Mossman KL (2014) Danger, diversity and priming in innate antiviral immunity. Cytokine Growth Factor Rev 25(5):525–531. doi:10.1016/j.cytogfr.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  • Collis P, Antoniou M, Grosveld F (1990) Definition of the minimal requirements within the human beta-globin gene and the dominant control region for high level expression. EMBO J 9(1):233–240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper A, Garcia M, Petrovas C, Yamamoto T, Koup RA, Nabel GJ (2013) HIV-1 causes CD4 cell death through DNA-dependent protein kinase during viral integration. Nature 498(7454):376–379. doi:10.1038/nature12274

    Article  CAS  PubMed  Google Scholar 

  • Cron RQ, Bartz SR, Clausell A, Bort SJ, Klebanoff SJ, Lewis DB (2000) NFAT1 enhances HIV-1 gene expression in primary human CD4 T cells. Clin Immunol 94(3):179–191. doi:10.1006/clim.1999.4831

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Xie N, Tan Z, Banerjee S, Thannickal VJ, Abraham E, Liu G (2014) The human long noncoding RNA lnc-IL7R regulates the inflammatory response. Eur J Immunol 44(7):2085–2095. doi:10.1002/eji.201344126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, Muller H, Ragoussis J, Wei CL, Natoli G (2010) A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 8(5):e1000384. doi:10.1371/journal.pbio.1000384

    Article  PubMed  PubMed Central  Google Scholar 

  • Demeulemeester J, De Rijck J, Gijsbers R, Debyser Z (2015) Retroviral integration: site matters: mechanisms and consequences of retroviral integration site selection. BioEssays 37(11):1202–1214. doi:10.1002/bies.201500051

    Article  PubMed  Google Scholar 

  • Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigo R (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789. doi:10.1101/gr.132159.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitrova N, Zamudio JR, Jong RM, Soukup D, Resnick R, Sarma K, Ward AJ, Raj A, Lee JT, Sharp PA, Jacks T (2014) LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell 54(5):777–790. doi:10.1016/j.molcel.2014.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doitsh G, Cavrois M, Lassen KG, Zepeda O, Yang Z, Santiago ML, Hebbeler AM, Greene WC (2010) Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell 143(5):789–801. doi:10.1016/j.cell.2010.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enge M, Bao W, Hedstrom E, Jackson SP, Moumen A, Selivanova G (2009) MDM2-dependent downregulation of p21 and hnRNP K provides a switch between apoptosis and growth arrest induced by pharmacologically activated p53. Cancer Cell 15(3):171–183. doi:10.1016/j.ccr.2009.01.019

    Article  CAS  PubMed  Google Scholar 

  • Fischer AM, Katayama CD, Pages G, Pouyssegur J, Hedrick SM (2005) The role of erk1 and erk2 in multiple stages of T cell development. Immunity 23(4):431–443. doi:10.1016/j.immuni.2005.08.013

    Article  CAS  PubMed  Google Scholar 

  • Flynn RA, Chang HY (2012) Active chromatin and noncoding RNAs: an intimate relationship. Curr Opin Genet Dev 22(2):172–178. doi:10.1016/j.gde.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  • Gomez JA, Wapinski OL, Yang YW, Bureau JF, Gopinath S, Monack DM, Chang HY, Brahic M, Kirkegaard K (2013) The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-gamma locus. Cell 152(4):743–754. doi:10.1016/j.cell.2013.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zak O, Carey B.W, Cassady JP, Cavili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227. doi:10.1038/nature07672

    Google Scholar 

  • Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482(7385):339–346. doi:10.1038/nature10887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habelhah H, Shah K, Huang L, Ostareck-Lederer A, Burlingame AL, Shokat KM, Hentze MW, Ronai Z (2001) ERK phosphorylation drives cytoplasmic accumulation of hnRNP-K and inhibition of mRNA translation. Nat Cell Biol 3(3):325–330. doi:10.1038/35060131

    Article  CAS  PubMed  Google Scholar 

  • Hah N, Murakami S, Nagari A, Danko CG, Kraus WL (2013) Enhancer transcripts mark active estrogen receptor binding sites. Genome Res 23(8):1210–1223. doi:10.1101/gr.152306.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamon MA, Cossart P (2008) Histone modifications and chromatin remodeling during bacterial infections. Cell Host Microbe 4(2):100–109. doi:10.1016/j.chom.2008.07.009

    Article  CAS  PubMed  Google Scholar 

  • Hartlerode AJ, Scully R (2009) Mechanisms of double-strand break repair in somatic mammalian cells. Biochem J 423(2):157–168. doi:10.1042/BJ20090942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu W, Alvarez-Dominguez JR, Lodish HF (2012) Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Rep 13(11):971–983. doi:10.1038/embor.2012.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, Attardi LD, Regev A, Lander ES, Jacks T, Rinn JL (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142(3):409–419. doi:10.1016/j.cell.2010.06.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IIott NE, Heward JA, Roux B, Tsitsiou E, Fenwick PS, Lenzi L, Goodhead I, Hertz-Fowler C, Heger A, Hall N, Donnelly LE, Sims D, Lindsay MA (2014) Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes. Nat Commun 5:3979. doi:10.1038/ncomms4979

    Article  PubMed  PubMed Central  Google Scholar 

  • Imam H, Bano AS, Patel P, Holla P, Jameel S (2015) The lncRNA NRON modulates HIV-1 replication in a NFAT-dependent manner and is differentially regulated by early and late viral proteins. Sci Rep 5:8639. doi:10.1038/srep08639

    Article  PubMed  PubMed Central  Google Scholar 

  • Imamura K, Imamachi N, Akizuki G, Kumakura M, Kawaguchi A, Nagata K, Kato A, Kawaguchi Y, Sato H, Yoneda M, Kai C, Yada T, Suzuki Y, Yamada T, Ozawa T, Kaneki K, Inoue T, Kobayashi M, Kodama T, Wada Y, Sekimizu K, Akimitsu N (2014) Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol Cell 53(3):393–406. doi:10.1016/j.molcel.2014.01.009

    Article  CAS  PubMed  Google Scholar 

  • Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461(7267):1071–1078. doi:10.1038/nature08467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  CAS  PubMed  Google Scholar 

  • Kaikkonen MU, Spann NJ, Heinz S, Romanoski CE, Allison KA, Stender JD, Chun HB, Tough DF, Prinjha RK, Benner C, Glass CK (2013) Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol Cell 51(3):310–325. doi:10.1016/j.molcel.2013.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27(3):247–254. doi:10.1038/85798

    Article  CAS  PubMed  Google Scholar 

  • Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465(7295):182–187. doi:10.1038/nature09033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornienko AE, Guenzl PM, Barlow DP, Pauler FM (2013) Gene regulation by the act of long non-coding RNA transcription. BMC Biol 11:59. doi:10.1186/1741-7007-11-59

    Article  PubMed  PubMed Central  Google Scholar 

  • Krawczyk M, Emerson BM (2014) p50-associated COX-2 extragenic RNA (PACER) activates COX-2 gene expression by occluding repressive NF-kappaB complexes. Elife 3:e01776. doi:10.7554/eLife.01776

    Article  PubMed  PubMed Central  Google Scholar 

  • Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA, Shiekhattar R (2013) Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494(7438):497–501. doi:10.1038/nature11884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai F, Gardini A, Zhang A, Shiekhattar R (2015) Integrator mediates the biogenesis of enhancer RNAs. Nature 525(7569):399–403. doi:10.1038/nature14906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam MT, Cho H, Lesch HP, Gosselin D, Heinz S, Tanaka-Oishi Y, Benner C, Kaikkonen MU, Kim AS, Kosaka M, Lee CY, Watt A, Grossman TR, Rosenfeld MG, Evans RM, Glass CK (2013) Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498(7455):511–515. doi:10.1038/nature12209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam MT, Li W, Rosenfeld MG, Glass CK (2014) Enhancer RNAs and regulated transcriptional programs. Trends Biochem Sci 39(4):170–182. doi:10.1016/j.tibs.2014.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKeRNAn K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921. doi:10.1038/35057062

    Article  CAS  PubMed  Google Scholar 

  • Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature 424(6945):147–151. doi:10.1038/nature01763

    Article  CAS  PubMed  Google Scholar 

  • Li W, Notani D, Ma Q, Tanasa B, Nunez E, Chen AY, Merkurjev D, Zhang J, Ohgi K, Song X, Oh S, Kim HS, Glass CK, Rosenfeld MG (2013) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498(7455):516–520. doi:10.1038/nature12210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Chao TC, Chang KY, Lin N, Patil VS, Shimizu C, Head SR, Burns JC, Rana TM (2014) The long noncoding RNA THRIL regulates TNFalpha expression through its interaction with hnRNPL. Proc Natl Acad Sci USA 111(3):1002–1007. doi:10.1073/pnas.1313768111

    Article  CAS  PubMed  Google Scholar 

  • Lilley CE, Schwartz RA, Weitzman MD (2007) Using or abusing: viruses and the cellular DNA damage response. Trends Microbiol 15(3):119–126. doi:10.1016/j.tim.2007.01.003

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X, Lin L, Yao H, Su F, Li D, Zeng M, Song E (2015) A cytoplasmic NF-kappaB interacting long noncoding RNA blocks IkappaB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 27(3):370–381. doi:10.1016/j.ccell.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  • Lusic M, Giacca M (2014) Ground control to Major Tom: “prepare for HIV landing”. Cell Host Microbe 16(5):557–559. doi:10.1016/j.chom.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  • Manganaro L, Lusic M, Gutierrez MI, Cereseto A, Del Sal G, Giacca M (2010) Concerted action of cellular JNK and Pin1 restricts HIV-1 genome integration to activated CD4 + T lymphocytes. Nat Med 16(3):329–333. doi:10.1038/nm.2102

    Article  CAS  PubMed  Google Scholar 

  • Marini B, Kertesz-Farkas A, Ali H, Lucic B, Lisek K, Manganaro L, Pongor S, Luzzati R, Recchia A, Mavilio F, Giacca M, Lusic M (2015) Nuclear architecture dictates HIV-1 integration site selection. Nature 521(7551):227–231. doi:10.1038/nature14226

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS (2004) RNA regulation: a new genetics? Nat Rev Genet 5(4):316–323. doi:10.1038/nrg1321

    Article  CAS  PubMed  Google Scholar 

  • Meek DW (2004) The p53 response to DNA damage. DNA Repair (Amst) 3(8–9):1049–1056. doi:10.1016/j.dnarep.2004.03.027

    Article  CAS  Google Scholar 

  • Melo CA, Drost J, Wijchers PJ, van de Werken H, de Wit E, Oude Vrielink JA, Elkon R, Melo SA, Leveille N, Kalluri R, de Laat W, Agami R (2013) eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell 49(3):524–535. doi:10.1016/j.molcel.2012.11.021

    Article  CAS  PubMed  Google Scholar 

  • Mhlanga MM (2012) Overview of non-coding RNAs keystone symposia. Snowbird, Utah, 31 March 2012

    Google Scholar 

  • Mogensen TH, Melchjorsen J, Larsen CS, Paludan SR (2010) Innate immune recognition and activation during HIV infection. Retrovirology 7:54. doi:10.1186/1742-4690-7-54

  • Moumen A, Masterson P, O’Connor MJ, Jackson SP (2005) hnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell 123(6):1065–1078

    Article  CAS  PubMed  Google Scholar 

  • Mousavi K, Zare H, Dell’orso S, Grontved L, Gutierrez-Cruz G, Derfoul A, Hager GL, Sartorelli V (2013) eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol Cell 51(5):606–617. doi:10.1016/j.molcel.2013.07.022

    Google Scholar 

  • Nagano T, Fraser P (2011) No-nonsense functions for long noncoding RNAs. Cell 145(2):178–181. doi:10.1016/j.cell.2011.03.014

    Google Scholar 

  • Nickerson JA, Krochmalnic G, Wan KM, Penman S (1989) Chromatin architecture and nuclear RNA. Proc Natl Acad Sci USA 86(1):177–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, Guigo R, Shiekhattar R (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143(1):46–58. doi:10.1016/j.cell.2010.09.001

    Google Scholar 

  • Ouyang J, Zhu X, Chen Y, Wei H, Chen Q, Chi X, Qi B, Zhang L, Zhao Y, Gao GF, Wang G, Chen JL (2014) NRAV, a long noncoding RNA, modulates antiviral responses through suppression of interferon-stimulated gene transcription. Cell Host Microbe 16(5):616–626. doi:10.1016/j.chom.2014.10.001

    Google Scholar 

  • Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32(2):232–246. doi:10.1016/j.molcel.2008.08.022

    Google Scholar 

  • Paul J, Duerksen JD (1975) Chromatin-associated RNA content of heterochromatin and euchromatin. Mol Cell Biochem 9(1):9–16

    Article  CAS  PubMed  Google Scholar 

  • Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N (1996) Requirement for Xist in X chromosome inactivation. Nature 379(6561):131–137

    Article  CAS  PubMed  Google Scholar 

  • Ponjavic J, Oliver PL, Lunter G, Ponting CP (2009) Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genet 5(8):e1000617. doi:10.1371/journal.pgen.1000617

    Google Scholar 

  • Ponting CP, Belgard TG (2010) Transcribed dark matter: meaning or myth? Hum Mol Genet 19(R2):R162–168. doi:10.1093/hmg/ddq362

    Google Scholar 

  • Rapicavoli NA, Qu K, Zhang J, Mikhail M, Laberge RM, Chang HY (2013) A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. Elife 2:e00762. doi:10.7554/eLife.00762

  • Rich T, Allen RL, Wyllie AH (2000) Defying death after DNA damage. Nature 407(6805):777–783

    Article  CAS  PubMed  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9(5):402–412. doi:10.1038/nrm2395

    Google Scholar 

  • Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166. doi:10.1146/annurev-biochem-051410-092902

    Google Scholar 

  • Saccani S, Pantano S, Natoli G (2002) p38-Dependent marking of inflammatory genes for increased NF-kappa B recruitment. Nat Immunol 3(1):69–75

    Article  CAS  PubMed  Google Scholar 

  • Salditt-Georgieff M, Darnell JE Jr (1982) Further evidence that the majority of primary nuclear RNA transcripts in mammalian cells do not contribute to mRNA. Mol Cell Biol 2(6):701–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaukowitch K, Joo JY, Liu X, Watts JK, Martinez C, Kim TK (2014) Enhancer RNA facilitates NELF release from immediate early genes. Mol Cell 56(1):29–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Findlay GM, Bandukwala HS, Oberdoerffer S, Baust B, Li Z, Schmidt V, Hogan PG, Sacks DB, Rao A (2011) Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex. Proc Natl Acad Sci USA 108(28):11381–11386. doi:10.1073/pnas.1019711108

    Google Scholar 

  • Sigova AA, Abraham BJ, Ji X, Molinie B, Hannett NM, Guo YE, Jangi M, Giallourakis CC, Sharp PA, Young RA (2015) Transcription factor trapping by RNA in gene regulatory elements. Science 350(6263):978–981. doi:10.1126/science.aad3346

    Google Scholar 

  • Sleutels F, Zwart R, Barlow DP (2002) The non-coding air RNA is required for silencing autosomal imprinted genes. Nature 415(6873):810–813

    Article  CAS  PubMed  Google Scholar 

  • Smale ST (2012) Transcriptional regulation in the innate immune system. Curr Opin Immunol 24(1):51–57. doi:10.1016/j.coi.2011.12.008

    Google Scholar 

  • Swingler S, Mann AM, Zhou J, Swingler C, Stevenson M (2007) Apoptotic killing of HIV-1-infected macrophages is subverted by the viral envelope glycoprotein. PLoS Pathog 3:1281–1290. doi:10.1371/journal.ppat.0030134

    Google Scholar 

  • Tuan D, Kong S, Hu K (1992) Transcription of the hypersensitive site HS2 enhancer in erythroid cells. Proc Natl Acad Sci USA 89(23):11219–11223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X (2001) The sequence of the human genome. Science 291(5507):1304–1351

    Article  CAS  PubMed  Google Scholar 

  • Vigneau S, Rohrlich PS, Brahic M, Bureau JF (2003) Tmevpg1, a candidate gene for the control of Theiler’s virus persistence, could be implicated in the regulation of gamma interferon. J Virol 77(10):5632–5638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914. doi:10.1016/j.molcel.2011.08.018

    Google Scholar 

  • Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, Wysocka J, Lei M, Dekker J, Helms JA, Chang HY (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472(7341):120–124. doi:10.1038/nature09819

    Google Scholar 

  • Weinberg RA, Penman S (1968) Small molecular weight monodisperse nuclear RNA. J Mol Biol 38(3):289–304

    Article  CAS  PubMed  Google Scholar 

  • Weinmann AS, Mitchell DM, Sanjabi S, Bradley MN, Hoffmann A, Liou HC, Smale ST (2001) Nucleosome remodeling at the IL-12 p40 promoter is a TLR-dependent. Rel-independent Event Nat Immunol 2(1):51–57

    CAS  PubMed  Google Scholar 

  • Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153(2):307–319. doi:10.1016/j.cell.2013.03.035

    Google Scholar 

  • Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG, Aza-Blanc P, Hogenesch JB, Schultz PG (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309(5740):1570–1573

    Article  CAS  PubMed  Google Scholar 

  • Winterling C, Koch M, Koeppel M, Garcia-Alcalde F, Karlas A, Meyer TF (2014) Evidence for a crucial role of a host non-coding RNA in influenza a virus replication. RNA Biol 11(1):66–75. doi:10.4161/rna.27504

    Google Scholar 

  • Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ, Southwick AM, Wu HC, Kim C, Nguyen M, Pham P, Cheuk R, Karlin-Newmann G, Liu SX, Lam B, Sakano H, Wu T, Yu G, Miranda M, Quach HL, Tripp M, Chang CH, Lee JM, Toriumi M, Chan MM, Tang CC, Onodera CS, Deng JM, Akiyama K, Ansari Y, Arakawa T, Banh J, Banno F, Bowser L, Brooks S, Carninci P, Chao Q, Choy N, Enju A, Goldsmith AD, Gurjal M, Hansen NF, Hayashizaki Y, Johnson-Hopson C, Hsuan VW, Iida K, Karnes M, Khan S, Koesema E, Ishida J, Jiang PX, Jones T, Kawai J, Kamiya A, Meyers C, Nakajima M, Narusaka M, Seki M, Sakurai T, Satou M, Tamse R, Vaysberg M, Wallender EK, Wong C, Yamamura Y, Yuan S, Shinozaki K, Davis RW, Theologis A, Ecker JR (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302(5646):842–846

    Article  CAS  PubMed  Google Scholar 

  • Yan N, Chen ZJ (2012) Intrinsic antiviral immunity. Nat Immunol 13(3):214–222. doi:10.1038/ni.2229

    Google Scholar 

  • Yoon JH, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S, Huarte M, Zhan M, Becker KG, Gorospe M (2012) LincRNA-p21 suppresses target mRNA translation. Mol Cell 47(4):648–655. doi:10.1016/j.molcel.2012.06.027

    Google Scholar 

  • Zhang Q, Chen CY, Yedavalli VS, Jeang KT (2013) NEAT1 long noncoding RNA and paraspeckle bodies modulate HIV-1 posttranscriptional expression. MBio 4(1):e00596–00512. doi:10.1128/mBio.00596-12

  • Zhang Y, Cao X (2015) Long noncoding RNAs in innate immunity. Cell Mol Immunol 13(2):138–147. doi:10.1038/cmi.2015.68

    Google Scholar 

  • Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408(6811):433–439

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samantha Barichievy or Musa M. Mhlanga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barichievy, S., Magagula, L., Shibayama, Y., Mhlanga, M.M. (2016). Microbial Manipulation Host Dark Matter. In: Leitão, A., Enguita, F. (eds) Non-coding RNAs and Inter-kingdom Communication. Springer, Cham. https://doi.org/10.1007/978-3-319-39496-1_2

Download citation

Publish with us

Policies and ethics