Skip to main content

RNA-Mediated Silencing in Eukaryotes: Evolution of Protein Components and Biological Roles

  • Chapter
  • First Online:
Evolution of the Protein Synthesis Machinery and Its Regulation

Abstract

RNA interference (RNAi), the process by which small RNAs (~20–30 nt in length) derived from double-stranded RNA precursors can induce silencing of cognate sequences, was initially characterized in Caenorhabditis elegans. Since then distinct RNAi mechanisms and pathways have been described in diverse eukaryotes, suggesting that RNA-mediated silencing is an evolutionary conserved process in the eukaryotic domain of life. Core protein components of the RNAi machinery include Argonaute-PIWI polypeptides, RNAseIII-like endonucleases termed Dicers and RNA-dependent RNA polymerases. Although the archetypal domains of these proteins appear to have been assembled from prokaryotic sources, phylogenetic analyses indicate that the three components came together as a functional unit in the last common ancestor of eukaryotes. Consistent with this interpretation, core RNAi proteins are widely distributed among organisms in all major eukaryotic lineages, particularly Argonaute-PIWI polypeptides, which typify the key RNAi players. Nonetheless, the RNAi machinery has also been lost independently in multiple divergent species during evolution, suggesting that its ancestral function was not essential for unicellular life. The prevailing hypothesis is that the primeval RNAi machinery emerged as a defense system against parasitic genetic elements such as viruses and transposons. In contrast, a regulatory function of RNAi, through microRNAs and an assortment of other distinct small RNAs, may have evolved more recently, influencing newly arisen, lineage-specific processes such as cell differentiation and development in multicellular eukaryotes. However, defining the contribution of small RNA-mediated gene regulation to the evolution of organismal complexity remains a challenge for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cerutti H, Ma X, Msanne J, Repas T. RNA-mediated silencing in Algae: biological roles and tools for analysis of gene function. Eukaryot Cell. 2011;10:1164–72. doi:10.1128/EC.05106-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Poulsen C, Vaucheret H, Brodersen P. Lessons on RNA silencing mechanisms in plants from eukaryotic argonaute structures. Plant Cell. 2013;25:22–37. doi:10.1105/tpc.112.105643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, Patel DJ, van der Oost J. The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol. 2014;21:743–53. doi:10.1038/nsmb.2879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Borges F, Martienssen RA. The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol. 2015;16:727–41. doi:10.1038/nrm4085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ipsaro JJ, Joshua-Tor L. From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol. 2015;22:20–8. doi:10.1038/nsmb.2931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Iwakawa HO, Tomari Y. The functions of microRNAs: mRNA decay and translational repression. Trends Cell Biol. 2015;25:651–65. doi:10.1016/j.tcb.2015.07.011.

    Article  CAS  PubMed  Google Scholar 

  7. Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015;16:421–33. doi:10.1038/nrg3965.

    Article  CAS  PubMed  Google Scholar 

  8. Leung AK. The whereabouts of microRNA actions: cytoplasm and beyond. Trends Cell Biol. 2015;25:601–10. doi:10.1016/j.tcb.2015.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilczynska A, Bushell M. The complexity of miRNA-mediated repression. Cell Death Differ. 2015;22:22–33. doi:10.1038/cdd.2014.112.

    Article  CAS  PubMed  Google Scholar 

  10. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11. doi:10.1038/35888.

    Article  CAS  PubMed  Google Scholar 

  11. Chu Y, Yue X, Younger ST, Janowski BA, Corey DR. Involvement of argonaute proteins in gene silencing and activation by RNAs complementary to a non-coding transcript at the progesterone receptor promoter. Nucleic Acids Res. 2010;38:7736–48. doi:10.1093/nar/gkq648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mortensen RD, Serra M, Steitz JA, Vasudevan S. Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA-protein complexes (microRNPs). Proc Natl Acad Sci USA. 2011;108:8281–6. doi:10.1073/pnas.1105401108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gagnon KT, Li L, Chu Y, Janowski BA, Corey DR. RNAi factors are present and active in human cell nuclei. Cell Rep. 2014;6:211–21. doi:10.1016/j.celrep.2013.12.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo D, Barry L, Lin SS, Huang V, Li LC. RNAa in action: from the exception to the norm. RNA Biol. 2014;11:1221–5. doi:10.4161/15476286.2014.972853.

    Article  PubMed  Google Scholar 

  15. Burroughs AM, Ando Y, Aravind L. New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing. Wiley Interdiscip Rev RNA. 2014;5:141–81. doi:10.1002/wrna.1210.

    Article  CAS  PubMed  Google Scholar 

  16. Peng JC, Lin H. Beyond transposons: the epigenetic and somatic functions of the Piwi-piRNA mechanism. Curr Opin Cell Biol. 2013;25:190–4. doi:10.1016/j.ceb.2013.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dueck A, Meister G. Assembly and function of small RNA—argonaute protein complexes. Biol Chem. 2014;395:611–29. doi:10.1515/hsz-2014-0116.

    Article  CAS  PubMed  Google Scholar 

  18. Schirle NT, MacRae IJ. The crystal structure of human Argonaute2. Science. 2012;336:1037–40. doi:10.1126/science.1221551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sasaki HM, Tomari Y. The true core of RNA silencing revealed. Nat Struct Mol Biol. 2012;19:657–60. doi:10.1038/nsmb.2302.

    Article  CAS  PubMed  Google Scholar 

  20. Faehnle CR, Elkayam E, Haase AD, Hannon GJ, Joshua-Tor L. The making of a slicer: activation of human Argonaute-1. Cell Rep. 2013;3:1901–9. doi:10.1016/j.celrep.2013.05.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hauptmann J, Dueck A, Harlander S, Pfaff J, Merkl R, Meister G. Turning catalytically inactive human Argonaute proteins into active slicer enzymes. Nat Struct Mol Biol. 2013;20:814–7. doi:10.1038/nsmb.2577.

    Article  CAS  PubMed  Google Scholar 

  22. Nakanishi K, Ascano M, Gogakos T, Ishibe-Murakami S, Serganov AA, Briskin D, Morozov P, Tuschl T, Patel DJ. Eukaryote-specific insertion elements control human Argonaute slicer activity. Cell Rep. 2013;3:1893–900. doi:10.1016/j.celrep.2013.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sheng G, Zhao H, Wang J, Rao Y, Tian W, Swarts DC, van der Oost J, Patel DJ, Wang Y. Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proc Natl Acad Sci USA. 2014;111:652–7. doi:10.1073/pnas.1321032111.

    Article  CAS  PubMed  Google Scholar 

  24. Baulcombe D. RNA silencing in plants. Nature. 2004;431:356–63. doi:10.1038/nature02874.

    Article  CAS  PubMed  Google Scholar 

  25. Cerutti H, Casas-Mollano JA. On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet. 2006;50:81–99. doi:10.1007/s00294-006-0078-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33. doi:10.1016/j.cell.2009.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dang Y, Yang Q, Xue Z, Liu Y. RNA interference in fungi: pathways, functions, and applications. Eukaryot Cell. 2011;10:1148–55. doi:10.1128/EC.05109-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Billmyre RB, Calo S, Feretzaki M, Wang X, Heitman J. RNAi function, diversity, and loss in the fungal kingdom. Chromosome Res. 2013;21:561–72. doi:10.1007/s10577-013-9388-2.

    Article  CAS  PubMed  Google Scholar 

  29. Nicolas FE, Torres-Martinez S, Ruiz-Vazquez RM. Loss and retention of RNA interference in fungi and parasites. PLoS Pathog. 2013;9:e1003089. doi:10.1371/journal.ppat.1003089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hoogstrate SW, Volkers RJ, Sterken MG, Kammenga JE, Snoek LB. Nematode endogenous small RNA pathways. Worm. 2014;3:e28234. doi:10.4161/worm.28234.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Posadas DM, Carthew RW. MicroRNAs and their roles in developmental canalization. Curr Opin Genet Dev. 2014;27:1–6. doi:10.1016/j.gde.2014.03.005.

    Article  CAS  PubMed  Google Scholar 

  32. Gebert D, Rosenkranz D. RNA-based regulation of transposon expression. Wiley Interdiscip Rev RNA. 2015;6:687–708. doi:10.1002/wrna.1310.

    Article  CAS  PubMed  Google Scholar 

  33. Malone CD, Hannon GJ. Small RNAs as guardians of the genome. Cell. 2009;136:656–68. doi:10.1016/j.cell.2009.01.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Axtell MJ, Westholm JO, Lai EC. Vive la difference: biogenesis and evolution of microRNAs in plants and animals. Genome Biol. 2011;12:221. doi:10.1186/gb-2011-12-4-221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ishizu H, Siomi H, Siomi MC. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev. 2012;26:2361–73. doi:10.1101/gad.203786.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell. 2013;25:2383–99. doi:10.1105/tpc.113.113159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ketting RF. The many faces of RNAi. Dev Cell. 2011;20:148–61. doi:10.1016/j.devcel.2011.01.012.

    Article  CAS  PubMed  Google Scholar 

  38. Shabalina SA, Koonin EV. Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol. 2008;23:578–87. doi:10.1016/j.tree.2008.06.005.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mukherjee K, Campos H, Kolaczkowski B. Evolution of animal and plant dicers: early parallel duplications and recurrent adaptation of antiviral RNA binding in plants. Mol Biol Evol. 2013;30:627–41. doi:10.1093/molbev/mss263.

    Article  CAS  PubMed  Google Scholar 

  40. Letunic I, Doerks T, Bork P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 2015;43:D257–60. doi:10.1093/nar/gku949.

    Article  PubMed  Google Scholar 

  41. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44:D279–85. doi:10.1093/nar/gkv1344.

    Article  PubMed  Google Scholar 

  42. Nakanishi K, Weinberg DE, Bartel DP, Patel DJ. Structure of yeast Argonaute with guide RNA. Nature. 2012;486:368–74. doi:10.1038/nature11211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Burroughs AM, Iyer LM, Aravind L. Two novel PIWI families: roles in inter-genomic conflicts in bacteria and Mediator-dependent modulation of transcription in eukaryotes. Biol Direct. 2013;8:13. doi:10.1186/1745-6150-8-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aravind L, Walker DR, Koonin EV. Conserved domains in DNA repair proteins and evolution of repair systems. Nucleic Acids Res. 1999;27:1223–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Makarova KS, Wolf YI, Koonin EV. Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res. 2013;41:4360–77. doi:10.1093/nar/gkt157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Makarova KS, Wolf YI, van der Oost J, Koonin EV. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol Direct. 2009;4:29. doi:10.1186/1745-6150-4-29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hock J, Meister G. The Argonaute protein family. Genome Biol. 2008;9:210. doi:10.1186/gb-2008-9-2-210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pak J, Fire A. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science. 2007; 315:241–244. doi:10.1126/science.1132839.

    Google Scholar 

  49. Sijen T, Steiner FA, Thijssen KL, Plasterk RH. Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science. 2007;315:244–7. doi:10.1126/science.1136699.

    Article  CAS  PubMed  Google Scholar 

  50. Wedeles CJ, Wu MZ, Claycomb JM. Protection of germline gene expression by the C. elegans Argonaute CSR-1. Dev Cell. 2013;27:664–71. doi:10.1016/j.devcel.2013.11.016.

    Article  CAS  PubMed  Google Scholar 

  51. Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet. 2013;14:447–59. doi:10.1038/nrg3462.

    Article  CAS  PubMed  Google Scholar 

  52. Swart EC, Nowacki M. The eukaryotic way to defend and edit genomes by sRNA-targeted DNA deletion. Ann NY Acad Sci. 2015;1341:106–14. doi:10.1111/nyas.12636.

    Article  CAS  PubMed  Google Scholar 

  53. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8. doi:10.1093/bioinformatics/btm404.

    Article  CAS  PubMed  Google Scholar 

  54. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

    CAS  PubMed  Google Scholar 

  55. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–9. doi:10.1093/molbev/msm092.

    Article  CAS  PubMed  Google Scholar 

  56. Macrae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA. Structural basis for double-stranded RNA processing by Dicer. Science. 2006;311:195–8. doi:10.1126/science.1121638.

    Article  CAS  PubMed  Google Scholar 

  57. Patrick KL, Shi H, Kolev NG, Ersfeld K, Tschudi C, Ullu E. Distinct and overlapping roles for two Dicer-like proteins in the RNA interference pathways of the ancient eukaryote Trypanosoma brucei. Proc Natl Acad Sci USA. 2009;106:17933–8. doi:10.1073/pnas.0907766106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W. Single processing center models for human Dicer and bacterial RNase III. Cell. 2004;118:57–68. doi:10.1016/j.cell.2004.06.017.

    Article  CAS  PubMed  Google Scholar 

  59. Drinnenberg IA, Weinberg DE, Xie KT, Mower JP, Wolfe KH, Fink GR, Bartel DP. RNAi in budding yeast. Science. 2009;326:544–50. doi:10.1126/science.1176945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Weinberg DE, Nakanishi K, Patel DJ, Bartel DP. The inside-out mechanism of Dicers from budding yeasts. Cell. 2011;146:262–76. doi:10.1016/j.cell.2011.06.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shi H, Tschudi C, Ullu E. An unusual Dicer-like1 protein fuels the RNA interference pathway in Trypanosoma brucei. RNA. 2006;12:2063–72. doi:10.1261/rna.246906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hu Y, Stenlid J, Elfstrand M, Olson A. Evolution of RNA interference proteins dicer and argonaute in Basidiomycota. Mycologia. 2013;105:1489–98. doi:10.3852/13-171.

    Article  CAS  PubMed  Google Scholar 

  63. Sandoval PY, Swart EC, Arambasic M, Nowacki M. Functional diversification of Dicer-like proteins and small RNAs required for genome sculpting. Dev Cell. 2014;28:174–88. doi:10.1016/j.devcel.2013.12.010.

    Article  CAS  PubMed  Google Scholar 

  64. Zong J, Yao X, Yin J, Zhang D, Ma H. Evolution of the RNA-dependent RNA polymerase (RdRP) genes: duplications and possible losses before and after the divergence of major eukaryotic groups. Gene. 2009;447:29–39. doi:10.1016/j.gene.2009.07.004.

    Article  CAS  PubMed  Google Scholar 

  65. Hammond TM, Keller NP. RNA silencing in Aspergillus nidulans is independent of RNA-dependent RNA polymerases. Genetics. 2005;169:607–17. doi:10.1534/genetics.104.035964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang JS, Lai EC. Dicer-independent, Ago2-mediated microRNA biogenesis in vertebrates. Cell Cycle. 2010;9:4455–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang JS, Maurin T, Lai EC. Functional parameters of Dicer-independent microRNA biogenesis. RNA. 2012;18:945–57. doi:10.1261/rna.032938.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Olovnikov I, Chan K, Sachidanandam R, Newman DK, Aravin AA. Bacterial argonaute samples the transcriptome to identify foreign DNA. Mol Cell. 2013;51:594–605. doi:10.1016/j.molcel.2013.08.014.

    Article  CAS  PubMed  Google Scholar 

  69. Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH, Snijders AP, Wang Y, Patel DJ, Berenguer J, Brouns SJ, van der Oost J. DNA-guided DNA interference by a prokaryotic Argonaute. Nature. 2014;507:258–61. doi:10.1038/nature12971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zander A, Holzmeister P, Klose D, Tinnefeld P, Grohmann D. Single-molecule FRET supports the two-state model of Argonaute action. RNA Biol. 2014;11:45–56. doi:10.4161/rna.27446.

    Article  CAS  PubMed  Google Scholar 

  71. Ma X, Kim EJ, Kook I, Ma F, Voshall A, Moriyama E, Cerutti H. Small interfering RNA-mediated translation repression alters ribosome sensitivity to inhibition by cycloheximide in Chlamydomonas reinhardtii. Plant Cell. 2013;25:985–98. doi:10.1105/tpc.113.109256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 2005;19:489–501. doi:10.1101/gad.1248505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Martienssen RA, Zaratiegui M, Goto DB. RNA interference and heterochromatin in the fission yeast Schizosaccharomyces pombe. Trends Genet. 2005;21:450–6. doi:10.1016/j.tig.2005.06.005.

    Article  CAS  PubMed  Google Scholar 

  74. Casas-Mollano JA, Rohr J, Kim EJ, Balassa E, van Dijk K, Cerutti H. Diversification of the core RNA interference machinery in Chlamydomonas reinhardtii and the role of DCL1 in transposon silencing. Genetics. 2008;179:69–81. doi:10.1534/genetics.107.086546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang X, Hsueh YP, Li W, Floyd A, Skalsky R, Heitman J. Sex-induced silencing defends the genome of Cryptococcus neoformans via RNAi. Genes Dev. 2010;24:2566–82. doi:10.1101/gad.1970910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nakayashiki H, Kadotani N, Mayama S. Evolution and diversification of RNA silencing proteins in fungi. J Mol Evol. 2006;63:127–35. doi:10.1007/s00239-005-0257-2.

    Article  CAS  PubMed  Google Scholar 

  77. Berezikov E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet. 2011;12:846–60. doi:10.1038/nrg3079.

    Article  CAS  PubMed  Google Scholar 

  78. Drinnenberg IA, Fink GR, Bartel DP. Compatibility with killer explains the rise of RNAi-deficient fungi. Science. 2011;333:1592. doi:10.1126/science.1209575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Voshall A, Kim EJ, Ma X, Moriyama EN, Cerutti H. Identification of AGO3-associated miRNAs and computational prediction of their targets in the green alga Chlamydomonas reinhardtii. Genetics. 2015;200:105–21. doi:10.1534/genetics.115.174797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yamasaki T, Kim EJ, Cerutti H, Ohama T. Argonaute3 is a key player in miRNA-mediated target cleavage and translational repression in Chlamydomonas. Plant J. 2015;. doi:10.1111/tpj.13107.

    Google Scholar 

  81. Smialowska A, Djupedal I, Wang J, Kylsten P, Swoboda P, Ekwall K. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe. Biochem Biophys Res Commun. 2014;444:254–9. doi:10.1016/j.bbrc.2014.01.057.

    Article  CAS  PubMed  Google Scholar 

  82. Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS, Bartel DP. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature. 2008;455:1193–7. doi:10.1038/nature07415.

    Article  CAS  PubMed  Google Scholar 

  83. Cuperus JT, Fahlgren N, Carrington JC. Evolution and functional diversification of MIRNA genes. Plant Cell. 2011;23:431–42. doi:10.1105/tpc.110.082784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lenz D, May P, Walther D. Comparative analysis of miRNAs and their targets across four plant species. BMC Res Notes. 2011;4:483. doi:10.1186/1756-0500-4-483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sheng Y, Previti C. Genomic features and computational identification of human microRNAs under long-range developmental regulation. BMC Genom. 2011;12:270. doi:10.1186/1471-2164-12-270.

    Article  CAS  Google Scholar 

  86. Nozawa M, Miura S, Nei M. Origins and evolution of microRNA genes in plant species. Genome Biol Evol. 2012;4:230–9. doi:10.1093/gbe/evs002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tarver JE, Donoghue PC, Peterson KJ. Do miRNAs have a deep evolutionary history? BioEssays. 2012;34:857–66. doi:10.1002/bies.201200055.

    Article  CAS  PubMed  Google Scholar 

  88. Tarver JE, Cormier A, Pinzon N, Taylor RS, Carre W, Strittmatter M, Seitz H, Coelho SM, Cock JM. microRNAs and the evolution of complex multicellularity: identification of a large, diverse complement of microRNAs in the brown alga Ectocarpus. Nucleic Acids Res. 2015;43:6384–98. doi:10.1093/nar/gkv578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

JAC-M is supported by a Young Investigator grant from the São Paulo Research Foundation (FAPESP 2011/50483-2). This work was supported in part by a grant from the National Science Foundation (to HC). We apologize to all researchers whose contributions could not be cited because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Armando Casas-Mollano or Heriberto Cerutti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Casas-Mollano, J., Zacarias, E., Ma, X., Kim, EJ., Cerutti, H. (2016). RNA-Mediated Silencing in Eukaryotes: Evolution of Protein Components and Biological Roles. In: Hernández, G., Jagus, R. (eds) Evolution of the Protein Synthesis Machinery and Its Regulation. Springer, Cham. https://doi.org/10.1007/978-3-319-39468-8_20

Download citation

Publish with us

Policies and ethics