Advertisement

Translational Control in Echinoderms: The Calm Before the Storm

  • Patrick CormierEmail author
  • Héloïse Chassé
  • Bertrand Cosson
  • Odile Mulner-Lorillon
  • Julia Morales
Chapter

Abstract

Starfish oocytes and sea urchin eggs are two different echinoderm model systems that have helped to address the control of gene expression at the translational level in relation to cell cycle regulation. This review describes the different mechanisms that control the translation of cyclin B mRNA during starfish meiotic maturation and sea urchin fertilization. During starfish meiotic maturation, cyclin B translation specifically depends on a CPEB regulation pathway whereas global protein synthesis appears to be regulated by the mTOR pathway. Three translation factors, eIF4F, eIF2α and eEF2, are activated in vivo in response to sea urchin egg fertilization, leading to an increase of protein synthesis. The mTOR signaling pathway involves in 4E-BP degradation and fine-tuning orchestration of cyclin B mRNA translation following fertilization is conserved in two sea urchin species separated by 20 millions years of evolutionary time. Combining biochemical, structural, cellular, and mathematical approaches, the analysis of the spatio-temporal dynamics of protein synthesis activation in different echinoderm model systems should provide insights into essential mRNA translation regulation occurring in physiological conditions.

Keywords

Meiotic Maturation Cytoplasmic Polyadenylation Element Binding Protein Global Protein Synthesis Starfish Oocyte eEF2 Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We apologize to those whose work was not cited or discussed here because of the broad scope of this review and space limitation. Research in the authors’ laboratories is supported by “La Ligue contre le Cancer (coordination du Grand Ouest (comités Finistère, Côtes d’Armor, Deux-Sèvres, Morbihan)),” the “Région Bretagne” and the “Conseil Général du Finistère.” B. Cosson is supported by Université Sorbonne Paris Cité (USPC) by the Research Project 2014 grant and 2015 International Fellowship. H. Chassé is a Ph.D. fellow supported by the Région Bretagne.

References

  1. 1.
    Ettensohn CA, Wessel GM, Wray GA. The invertebrate deuterostomes: an introduction to their phylogeny, reproduction, development, and genomics. Methods Cell Biol. 2004;74:1–13.CrossRefPubMedGoogle Scholar
  2. 2.
    Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell. 1983;33:389–96.CrossRefPubMedGoogle Scholar
  3. 3.
    Kishimoto T, Kuriyama R, Kondo H, Kanatani H. Generality of the action of various maturation-promoting factors. Exp Cell Res. 1982;137:121–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Swenson KI, Farrell KM, Ruderman JV. The clam embryo protein cyclin A induces entry into M phase and the resumption of meiosis in Xenopus oocytes. Cell. 1986;47:861–70.CrossRefPubMedGoogle Scholar
  5. 5.
    Labbe JC, Capony JP, Caput D, Cavadore JC, Derancourt J, Kaghad M, Lelias JM, Picard A, Doree M. MPF from starfish oocytes at first meiotic metaphase is a heterodimer containing one molecule of cdc2 and one molecule of cyclin B. EMBO J. 1989;8:3053–8.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Hunt T. Nobel lecture. Protein synthesis, proteolysis, and cell cycle transitions. Biosci Rep. 2002;22:465–86.CrossRefPubMedGoogle Scholar
  7. 7.
    Kishimoto T. A primer on meiotic resumption in starfish oocytes: the proposed signaling pathway triggered by maturation-inducing hormone. Mol Reprod Dev. 2011;78:704–7. doi: 10.1002/mrd.21343.CrossRefPubMedGoogle Scholar
  8. 8.
    Ochi H, Aoto S, Tachibana K, Hara M, Chiba K. Block of CDK1-dependent polyadenosine elongation of Cyclin B mRNA in metaphase-i-arrested starfish oocytes is released by intracellular pH elevation upon spawning. Mol Reprod Dev. 2016;83:79–87. doi: 10.1002/mrd.22599.CrossRefPubMedGoogle Scholar
  9. 9.
    Wagenaar EB. The timing of synthesis of proteins required for mitosis in the cell cycle of the sea urchin embryo. Exp Cell Res. 1983;144:393–403.CrossRefPubMedGoogle Scholar
  10. 10.
    Dube F. Effect of reduced protein synthesis on the cell cycle in sea urchin embryos. J Cell Physiol. 1988;137:545–52. doi: 10.1002/jcp.1041370321.CrossRefPubMedGoogle Scholar
  11. 11.
    Gross PR, Malkin LI, Moyer WA. Templates for the first proteins of embryonic development. Proc Natl Acad Sci USA. 1964;51:407–14.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Epel D. Protein synthesis in sea urchin eggs: a “late” response to fertilization. Proc Natl Acad Sci USA. 1967;57:899–906.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Brandhorst BP. Two-dimensional gel patterns of protein synthesis before and after fertilization of sea urchin eggs. Dev Biol. 1976;52:310–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Mathews MB, Sonenberg N, Hershey JW. Origins and principles of translational control. In: Sonenberg N, Hershey JW, Mathews MB, editors. Translational control of gene expression. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2000. p. 1–31.Google Scholar
  15. 15.
    Davidson EH, Hough-Evans BR, Britten RJ. Molecular biology of the sea urchin embryo. Science. 1982;217:17–26.CrossRefPubMedGoogle Scholar
  16. 16.
    Sea Urchin Genome Sequencing C, Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, Burke RD, Coffman JA, Dean M, Elphick MR, Ettensohn CA, Foltz KR, Hamdoun A, Hynes RO, Klein WH, Marzluff W, McClay DR, Morris RL, Mushegian A, Rast JP, Smith LC, Thorndyke MC, Vacquier VD, Wessel GM, Wray G, Zhang L, Elsik CG, Ermolaeva O, Hlavina W, Hofmann G, Kitts P, Landrum MJ, Mackey AJ, Maglott D, Panopoulou G, Poustka AJ, Pruitt K, Sapojnikov V, Song X, Souvorov A, Solovyev V, Wei Z, Whittaker CA, Worley K, Durbin KJ, Shen Y, Fedrigo O, Garfield D, Haygood R, Primus A, Satija R, Severson T, Gonzalez-Garay ML, Jackson AR, Milosavljevic A, Tong M, Killian CE, Livingston BT, Wilt FH, Adams N, Belle R, Carbonneau S, Cheung R, Cormier P, Cosson B, Croce J, Fernandez-Guerra A, Geneviere AM, Goel M, Kelkar H, Morales J, Mulner-Lorillon O, Robertson AJ, Goldstone JV, Cole B, Epel D, Gold B, Hahn ME, Howard-Ashby M, Scally M, Stegeman JJ, Allgood EL, Cool J, Judkins KM, McCafferty SS, Musante AM, Obar RA, Rawson AP, Rossetti BJ, Gibbons IR, Hoffman MP, Leone A, Istrail S, Materna SC, Samanta MP, Stolc V, Tongprasit W, Tu Q, Bergeron KF, Brandhorst BP, Whittle J, Berney K, Bottjer DJ, Calestani C, Peterson K, Chow E, Yuan QA, Elhaik E, Graur D, Reese JT, Bosdet I, Heesun S, Marra MA, Schein J, Anderson MK, Brockton V, Buckley KM, Cohen AH, Fugmann SD, Hibino T, Loza-Coll M, Majeske AJ, Messier C, Nair SV, Pancer Z, Terwilliger DP, Agca C, Arboleda E, Chen N, Churcher AM, Hallbook F, Humphrey GW, Idris MM, Kiyama T, Liang S, Mellott D, Mu X, Murray G, Olinski RP, Raible F, Rowe M, Taylor JS, Tessmar-Raible K, Wang D, Wilson KH, Yaguchi S, Gaasterland T, Galindo BE, Gunaratne HJ, Juliano C, Kinukawa M, Moy GW, Neill AT, Nomura M, Raisch M, Reade A, Roux MM, Song JL, Su YH, Townley IK, Voronina E, Wong JL, Amore G, Branno M, Brown ER, Cavalieri V, Duboc V, Duloquin L, Flytzanis C, Gache C, Lapraz F, Lepage T, Locascio A, Martinez P, Matassi G, Matranga V, Range R, Rizzo F, Rottinger E, Beane W, Bradham C, Byrum C, Glenn T, Hussain S, Manning G, Miranda E, Thomason R, Walton K, Wikramanayke A, Wu SY, Xu R, Brown CT, Chen L, Gray RF, Lee PY, Nam J, Oliveri P, Smith J, Muzny D, Bell S, Chacko J, Cree A, Curry S, Davis C, Dinh H, Dugan-Rocha S, Fowler J, Gill R, Hamilton C, Hernandez J, Hines S, Hume J, Jackson L, Jolivet A, Kovar C, Lee S, Lewis L, Miner G, Morgan M, Nazareth LV, Okwuonu G, Parker D, Pu LL, Thorn R, Wright R. The genome of the sea urchin Strongylocentrotus purpuratus. Science. 2006; 314:941–952. doi: 10.1126/science.1133609.
  17. 17.
    Morales J, Mulner-Lorillon O, Cosson B, Morin E, Belle R, Bradham CA, Beane WS, Cormier P. Translational control genes in the sea urchin genome. Dev Biol. 2006;300:293–307. doi: 10.1016/j.ydbio.2006.07.036.CrossRefPubMedGoogle Scholar
  18. 18.
    Humphreys T. Efficiency of translation of messenger-RNA before and after fertilization in sea urchins. Dev Biol. 1969;20:435–58.CrossRefPubMedGoogle Scholar
  19. 19.
    Spirin AS, Nemer M. Messenger RNA in early sea-urchin embryos: cytoplasmic particles. Science. 1965;150:214–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Kaumeyer JF, Jenkins NA, Raff RA. Messenger ribonucleoprotein particles in unfertilized sea urchin eggs. Dev Biol. 1978;63:266–78.CrossRefPubMedGoogle Scholar
  21. 21.
    Jenkins NA, Kaumeyer JF, Young EM, Raff RA. A test for masked message: the template activity of messenger ribonucleoprotein particles isolated from sea urchine eggs. Dev Biol. 1978;63:279–98.CrossRefPubMedGoogle Scholar
  22. 22.
    Clemens M. Translational control. Developments in development. Nature. 1987;330:699–700. doi: 10.1038/330699a0.CrossRefPubMedGoogle Scholar
  23. 23.
    Huang WI, Hansen LJ, Merrick WC, Jagus R. Inhibitor of eukaryotic initiation factor 4F activity in unfertilized sea urchin eggs. Proc Natl Acad Sci U S A. 1987;84:6359–63.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Colin AM, Brown BD, Dholakia JN, Woodley CL, Wahba AJ, Hille MB. Evidence for simultaneous derepression of messenger RNA and the guanine nucleotide exchange factor in fertilized sea urchin eggs. Dev Biol. 1987;123:354–63.CrossRefPubMedGoogle Scholar
  25. 25.
    Lopo AC, Lashbrook CC, Hershey JW. Characterization of translation systems in vitro from three developmental stages of Strongylocentrotus purpuratus. Biochem J. 1989;258:553–61.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Jagus R, Huang WI, Hansen LJ, Wilson MA. Changes in rates of protein synthesis and eukaryotic initiation factor-4 inhibitory activity in cell-free translation systems of sea urchin eggs and early cleavage stage embryos. J Biol Chem. 1992;267:15530–6.PubMedGoogle Scholar
  27. 27.
    Xu Z, Hille MB. Cell-free translation systems prepared from starfish oocytes faithfully reflect in vivo activity; mRNA and initiation factors stimulate supernatants from immature oocytes. Cell Regul. 1990;1:1057–67.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Merrick WC. eIF4F: a retrospective. J Biol Chem. 2015;290:24091–9. doi: 10.1074/jbc.R115.675280.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem. 1999;68:913–63. doi: 10.1146/annurev.biochem.68.1.913.CrossRefPubMedGoogle Scholar
  30. 30.
    Proud CG. Mnks, eIF4E phosphorylation and cancer. Biochim Biophys Acta. 2015;1849:766–73. doi: 10.1016/j.bbagrm.2014.10.003.CrossRefPubMedGoogle Scholar
  31. 31.
    Pyronnet S. Phosphorylation of the cap-binding protein eIF4E by the MAPK-activated protein kinase Mnk1. Biochem Pharmacol. 2000;60:1237–43.CrossRefPubMedGoogle Scholar
  32. 32.
    Joshi B, Cameron A, Jagus R. Characterization of mammalian eIF4E-family members. Eur J Biochem. 2004;271:2189–203. doi: 10.1111/j.1432-1033.2004.04149.x.CrossRefPubMedGoogle Scholar
  33. 33.
    Cameron RA, Samanta M, Yuan A, He D, Davidson E. SpBase: the sea urchin genome database and web site. Nucleic Acids Res. 2009; 37:D750–754. doi:gkn887 [pii]/nar/gkn887.Google Scholar
  34. 34.
    Lee SJ, Stapleton G, Greene JH, Hille MB. Protein kinase C-related kinase 2 phosphorylates the protein synthesis initiation factor eIF4E in starfish oocytes. Dev Biol. 2000;228:166–80. doi: 10.1006/dbio.2000.9943.CrossRefPubMedGoogle Scholar
  35. 35.
    Xu Z, Dholakia JN, Hille MB. Maturation hormone induced an increase in the translational activity of starfish oocytes coincident with the phosphorylation of the mRNA cap binding protein, eIF-4E, and the activation of several kinases. Dev Genet. 1993;14:424–39. doi: 10.1002/dvg.1020140604.CrossRefPubMedGoogle Scholar
  36. 36.
    Schmidt A, Durgan J, Magalhaes A, Hall A. Rho GTPases regulate PRK2/PKN2 to control entry into mitosis and exit from cytokinesis. EMBO J. 2007;26:1624–36. doi: 10.1038/sj.emboj.7601637.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cao Q, Richter JD. Dissolution of the maskin-eIF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation. The EMBO journal. 2002;21:3852–62. doi: 10.1093/emboj/cdf353.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lapasset L, Pradet-Balade B, Lozano JC, Peaucellier G, Picard A. Nuclear envelope breakdown may deliver an inhibitor of protein phosphatase 1 which triggers cyclin B translation in starfish oocytes. Dev Biol. 2005;285:200–10. doi: 10.1016/j.ydbio.2005.06.016.CrossRefPubMedGoogle Scholar
  39. 39.
    Lapasset L, Pradet-Balade B, Verge V, Lozano JC, Oulhen N, Cormier P, Peaucellier G. Cyclin B synthesis and rapamycin-sensitive regulation of protein synthesis during starfish oocyte meiotic divisions. Mol Reprod Dev. 2008;75:1617–26. doi: 10.1002/mrd.20905.CrossRefPubMedGoogle Scholar
  40. 40.
    Rosenthal ET, Brandhorst BP, Ruderman JV. Translationally mediated changes in patterns of protein synthesis during maturation of starfish oocytes. Dev Biol. 1982;91:215–20.CrossRefPubMedGoogle Scholar
  41. 41.
    Standart N, Minshull J, Pines J, Hunt T. Cyclin synthesis, modification and destruction during meiotic maturation of the starfish oocyte. Dev Biol. 1987;124:248–58.CrossRefPubMedGoogle Scholar
  42. 42.
    Bah A, Vernon RM, Siddiqui Z, Krzeminski M, Muhandiram R, Zhao C, Sonenberg N, Kay LE, Forman-Kay JD. Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature. 2014;. doi: 10.1038/nature13999.PubMedGoogle Scholar
  43. 43.
    Lin TA, Kong X, Haystead TA, Pause A, Belsham G, Sonenberg N, Lawrence JC Jr. PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science. 1994;266:653–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Fonseca BD, Smith EM, Yelle N, Alain T, Bushell M, Pause A. The ever-evolving role of mTOR in translation. Semin Cell Dev Biol. 2014;36:102–12. doi: 10.1016/j.semcdb.2014.09.014.CrossRefPubMedGoogle Scholar
  45. 45.
    Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274–93. doi: 10.1016/j.cell.2012.03.017.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Cormier P, Pyronnet S, Morales J, Mulner-Lorillon O, Sonenberg N, Belle R. eIF4E association with 4E-BP decreases rapidly following fertilization in sea urchin. Dev Biol. 2001;232:275–83. doi: 10.1006/dbio.2001.0206.CrossRefPubMedGoogle Scholar
  47. 47.
    Jagus R, Huang W, Hiremath LS, Stern BD, Rhoads RE. Mechanism of action of developmentally regulated sea urchin inhibitor of eIF-4. Dev Genet. 1993;14:412–23. doi: 10.1002/dvg.1020140603.CrossRefPubMedGoogle Scholar
  48. 48.
    Salaun P, Pyronnet S, Morales J, Mulner-Lorillon O, Belle R, Sonenberg N, Cormier P. eIF4E/4E-BP dissociation and 4E-BP degradation in the first mitotic division of the sea urchin embryo. Dev Biol. 2003;255:428–39.CrossRefPubMedGoogle Scholar
  49. 49.
    Hernandez G, Altmann M, Lasko P. Origins and evolution of the mechanisms regulating translation initiation in eukaryotes. Trends Biochem Sci. 2010;35:63–73. doi: 10.1016/j.tibs.2009.10.009.CrossRefPubMedGoogle Scholar
  50. 50.
    Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol Cell. 1999;3:707–16.CrossRefPubMedGoogle Scholar
  51. 51.
    Mader S, Lee H, Pause A, Sonenberg N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol. 1995;15:4990–7.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Gingras AC, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK, Polakiewicz RD, Wyslouch-Cieszynska A, Aebersold R, Sonenberg N. Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev. 2001;15:2852–64.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Oulhen N, Boulben S, Bidinosti M, Morales J, Cormier P, Cosson B. A variant mimicking hyperphosphorylated 4E-BP inhibits protein synthesis in a sea urchin cell-free, cap-dependent translation system. PLoS ONE. 2009;4:e5070. doi: 10.1371/journal.pone.0005070.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Gosselin P, Oulhen N, Jam M, Ronzca J, Cormier P, Czjzek M, Cosson B. The translational repressor 4E-BP called to order by eIF4E: new structural insights by SAXS. Nucleic Acids Res. 2011;39:3496–503. doi: 10.1093/nar/gkq1306.CrossRefPubMedGoogle Scholar
  55. 55.
    Lukhele S, Bah A, Lin H, Sonenberg N, Forman-Kay JD. Interaction of the eukaryotic initiation factor 4E with 4E-BP2 at a dynamic bipartite interface. Structure. 2013;21:2186–96. doi: 10.1016/j.str.2013.08.030.CrossRefPubMedGoogle Scholar
  56. 56.
    Peter D, Igreja C, Weber R, Wohlbold L, Weiler C, Ebertsch L, Weichenrieder O, Izaurralde E. Molecular architecture of 4E-BP translational inhibitors bound to eIF4E. Mol Cell. 2015;57:1074–87. doi: 10.1016/j.molcel.2015.01.017.CrossRefPubMedGoogle Scholar
  57. 57.
    Oulhen N, Salaun P, Cosson B, Cormier P, Morales J. After fertilization of sea urchin eggs, eIF4G is post-translationally modified and associated with the cap-binding protein eIF4E. J Cell Sci. 2007;120:425–34. doi: 10.1242/jcs.03339.CrossRefPubMedGoogle Scholar
  58. 58.
    Lin TA, Kong X, Saltiel AR, Blackshear PJ, Lawrence JC Jr. Control of PHAS-I by insulin in 3T3-L1 adipocytes. Synthesis, degradation, and phosphorylation by a rapamycin-sensitive and mitogen-activated protein kinase-independent pathway. J Biol Chem. 1995;270:18531–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Elia A, Constantinou C, Clemens MJ. Effects of protein phosphorylation on ubiquitination and stability of the translational inhibitor protein 4E-BP1. Oncogene. 2008;27:811–22. doi: 10.1038/sj.onc.1210678.CrossRefPubMedGoogle Scholar
  60. 60.
    Yanagiya A, Suyama E, Adachi H, Svitkin YV, Aza-Blanc P, Imataka H, Mikami S, Martineau Y, Ronai ZA, Sonenberg N. Translational homeostasis via the mRNA cap-binding protein, eIF4E. Mol Cell. 2012;46:847–58. doi: 10.1016/j.molcel.2012.04.004.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Salaun P, Boulben S, Mulner-Lorillon O, Belle R, Sonenberg N, Morales J, Cormier P. Embryonic-stage-dependent changes in the level of eIF4E-binding proteins during early development of sea urchin embryos. J Cell Sci. 2005;118:1385–94. doi: 10.1242/jcs.01716.CrossRefPubMedGoogle Scholar
  62. 62.
    Le Bouffant R, Cormier P, Mulner-Lorillon O, Belle R. Hypoxia and DNA-damaging agent bleomycin both increase the cellular level of the protein 4E-BP. J Cell Biochem. 2006;99:126–32. doi: 10.1002/jcb.20856.CrossRefPubMedGoogle Scholar
  63. 63.
    Le Bouffant R, Mulner-Lorillon O, Morales J, Cormier P, Belle R. Chromium(III) triggers the DNA-damaged checkpoint of the cell cycle and induces a functional increase of 4E-BP. Chem Res Toxicol. 2008;21:542–9. doi: 10.1021/tx700244h.CrossRefPubMedGoogle Scholar
  64. 64.
    Oulhen N, Mulner-Lorillon O, Cormier P. eIF4E-binding proteins are differentially modified after ammonia versus intracellular calcium activation of sea urchin unfertilized eggs. Mol Reprod Dev. 2010;77:83–91. doi: 10.1002/mrd.21110.CrossRefPubMedGoogle Scholar
  65. 65.
    Laurent S, Richard A, Mulner-Lorillon O, Morales J, Flament D, Glippa V, Bourdon J, Gosselin P, Siegel A, Cormier P, Belle R. Modelization of the regulation of protein synthesis following fertilization in sea urchin shows requirement of two processes: a destabilization of eIF4E:4E-BP complex and a great stimulation of the 4E-BP-degradation mechanism, both rapamycin-sensitive. Front Genet. 2014;5:117. doi: 10.3389/fgene.2014.00117.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Buszczak M, Signer RAJ, Morrison SJ. Cellular differences in protein synthesis regulate tissue homeostasis. Cell. 2014;2014(159):242–51. doi: 10.1016/J.Cell.09.016.CrossRefGoogle Scholar
  67. 67.
    Eltschinger S, Loewith R. TOR complexes and the maintenance of cellular homeostasis. Trends Cell Biol. 2016;26:148–59. doi: 10.1016/j.tcb.2015.10.003.CrossRefPubMedGoogle Scholar
  68. 68.
    Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 2009;10:307–18. doi: 10.1038/nrm2672.CrossRefPubMedGoogle Scholar
  69. 69.
    Guertin DA, Sabatini DM. The pharmacology of mTOR inhibition. Science Signaling. 2009; 2:pe24. doi: 10.1126/scisignal.267pe24.Google Scholar
  70. 70.
    Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, Shokat KM. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 2009;7:e38. doi: 10.1371/journal.pbio.1000038.CrossRefPubMedGoogle Scholar
  71. 71.
    Chassé H, Mulner-Lorillon O, Boulben S, Glippa V, Morales J, Cormier P. Cyclin B translation depends on mTOR activity after fertilization in sea urchin embryos. Plos One. 2016; doi: 10.1371/journal.pone.0150318. doi: 10.1371/journal.pone.0150318.Google Scholar
  72. 72.
    Kronja I, Orr-Weaver TL. Translational regulation of the cell cycle: when, where, how and why? Philos Trans R Soc Lond B Biol Sci. 2011;366:3638–52. doi: 10.1098/rstb.2011.0084.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Wilt FH. The dynamics of maternal poly(A)-containing mRNA in fertilized sea urchin eggs. Cell. 1977;11:673–81.CrossRefPubMedGoogle Scholar
  74. 74.
    Spieth J, Whiteley AH. Effect of 3′-deoxyadenosine (cordycepin) on the early development of the sand dollar. Dendraster excentricus. Dev Biol. 1980;79:95–106.CrossRefPubMedGoogle Scholar
  75. 75.
    Hara M, Mori M, Wada T, Tachibana K, Kishimoto T. Start of the embryonic cell cycle is dually locked in unfertilized starfish eggs. Development. 2009;136:1687–96. doi: 10.1242/dev.035261.CrossRefPubMedGoogle Scholar
  76. 76.
    Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol. 2010;11:113–27. doi: 10.1038/nrm2838.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Dever TE, Dar AC, Sicheri F. The eIF2α Kinases. In: Mathews MB, Sonenberg N, Hershey JWB (eds) Translational control in biology and medicine cold spring harbor. Cold Spring Harbor Laboratory Press; 2007. pp. 319–344.Google Scholar
  78. 78.
    Akkaraju GR, Hansen LJ, Jagus R. Increase in eukaryotic initiation factor 2B activity following fertilization reflects changes in redox potential. J Biol Chem. 1991;266:24451–9.PubMedGoogle Scholar
  79. 79.
    Costache V, Bilotto S, Laguerre L, Belle R, Cosson B, Cormier P, Morales J. Dephosphorylation of eIF2alpha is essential for protein synthesis increase and cell cycle progression after sea urchin fertilization. Dev Biol. 2012;365:303–9. doi: 10.1016/j.ydbio.2012.03.002.CrossRefPubMedGoogle Scholar
  80. 80.
    Tu Q, Cameron RA, Davidson EH. Quantitative developmental transcriptomes of the sea urchin Strongylocentrotus purpuratus. Dev Biol. 2014;385:160–7. doi: 10.1016/j.ydbio.2013.11.019.CrossRefPubMedGoogle Scholar
  81. 81.
    Guo H, Garcia-Vedrenne AE, Isserlin R, Lugowski A, Morada A, Sun A, Miao Y, Kuzmanov U, Wan C, Ma H, Foltz K, Emili A. Phosphoproteomic network analysis in the sea urchin Strongylocentrotus purpuratus reveals new candidates in egg activation. Proteomics. 2015;15:4080–95. doi: 10.1002/pmic.201500159.CrossRefPubMedGoogle Scholar
  82. 82.
    Romano PR, Garcia-Barrio MT, Zhang X, Wang Q, Taylor DR, Zhang F, Herring C, Mathews MB, Qin J, Hinnebusch AG. Autophosphorylation in the activation loop is required for full kinase activity in vivo of human and yeast eukaryotic initiation factor 2alpha kinases PKR and GCN2. Mol Cell Biol. 1998;18:2282–97.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Epel D. Activation of an Na + -dependent amino acid transport system upon fertilization of sea urchin eggs. Exp Cell Res. 1972;72:74–89.CrossRefPubMedGoogle Scholar
  84. 84.
    Timourian H, Watchmaker G. Protein synthesis in sea urchin eggs. II. Changes in amino aicd uptake and incorporation at fertilization. Dev Biol. 1970;23:478–91.CrossRefPubMedGoogle Scholar
  85. 85.
    Meyer E, Manahan DT. Nutrient uptake by marine invertebrates: cloning and functional analysis of amino acid transporter genes in developing sea urchins (Strongylocentrotus purpuratus). Biol Bull. 2009; 217:6–24. doi:217/1/6 [pii].Google Scholar
  86. 86.
    Iiboshi Y, Papst PJ, Kawasome H, Hosoi H, Abraham RT, Houghton PJ, Terada N. Amino acid-dependent control of p70(s6 k). Involvement of tRNA aminoacylation in the regulation. J Biol Chem. 1999;274:1092–9.CrossRefPubMedGoogle Scholar
  87. 87.
    Deng J, Harding HP, Raught B, Gingras AC, Berlanga JJ, Scheuner D, Kaufman RJ, Ron D, Sonenberg N. Activation of GCN2 in UV-irradiated cells inhibits translation. Curr Biol. 2002; 12:1279–1286. doi:S0960982202010370 [pii].Google Scholar
  88. 88.
    Krohn M, Skjolberg HC, Soltani H, Grallert B, Boye E. The G1-S checkpoint in fission yeast is not a general DNA damage checkpoint. J Cell Sci. 2008; 121:4047–4054. doi:jcs.035428 [pii]  10.1242/jcs.035428.
  89. 89.
    Menacho-Marquez M, Perez-Valle J, Arino J, Gadea J, Murguia JR. Gcn2p regulates a G1/S cell cycle checkpoint in response to DNA damage. Cell Cycle. 2007; 6:2302–2305. doi:4668 [pii].Google Scholar
  90. 90.
    Tvegard T, Soltani H, Skjolberg HC, Krohn M, Nilssen EA, Kearsey SE, Grallert B, Boye E. A novel checkpoint mechanism regulating the G1/S transition. Genes Dev. 2007; 21:649–654. doi:21/6/649 [pii]  10.1101/gad.421807.
  91. 91.
    Le Bouffant R, Boulben S, Cormier P, Mulner-Lorillon O, Belle R, Morales J. Inhibition of translation and modification of translation factors during apoptosis induced by the DNA-damaging agent MMS in sea urchin embryos. Exp Cell Res. 2008;314:961–8. doi: 10.1016/j.yexcr.2007.12.014.CrossRefPubMedGoogle Scholar
  92. 92.
    Aze A, Fayet C, Lapasset L, Geneviere AM. Replication origins are already licensed in G1 arrested unfertilized sea urchin eggs. Dev Biol. 2010;340:557–70. doi: 10.1016/j.ydbio.2010.02.009.CrossRefPubMedGoogle Scholar
  93. 93.
    Alves VS, Motta FL, Roffe M, Delamano A, Pesquero JB, Castilho BA. GCN2 activation and eIF2alpha phosphorylation in the maturation of mouse oocytes. Biochem Biophys Res Commun. 2009;378:41–4.CrossRefPubMedGoogle Scholar
  94. 94.
    Lee S, Truesdell SS, Bukhari SI, Lee JH, LeTonqueze O, Vasudevan S. Upregulation of eIF5B controls cell-cycle arrest and specific developmental stages. Proc Natl Acad Sci U S A. 2014;111:E4315–22. doi: 10.1073/pnas.1320477111.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Krauchunas AR, Horner VL, Wolfner MF. Protein phosphorylation changes reveal new candidates in the regulation of egg activation and early embryogenesis in D. melanogaster. Dev Biol. 2012;370:125–34. doi: 10.1016/j.ydbio.2012.07.024.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Traugh JA. Insulin, phorbol ester and serum regulate the elongation phase of protein synthesis. Prog Mol Subcell Biol. 2001;26:33–48.CrossRefPubMedGoogle Scholar
  97. 97.
    Browne GJ, Proud CG. Regulation of peptide-chain elongation in mammalian cells. Eur J Biochem. 2002;269:5360–8.CrossRefPubMedGoogle Scholar
  98. 98.
    Le Sourd F, Boulben S, Le Bouffant R, Cormier P, Morales J, Belle R, Mulner-Lorillon O. eEF1B: At the dawn of the 21st century. Biochim Biophys Acta. 2006;1759:13–31. doi: 10.1016/j.bbaexp.2006.02.003.CrossRefPubMedGoogle Scholar
  99. 99.
    Richter JD, Coller J. Pausing on polyribosomes: Make way for elongation in translational control. Cell. 2015;163:292–300. doi: 10.1016/j.cell.2015.09.041.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    White-Gilbertson S, Rubinchik S, Voelkel-Johnson C. Transformation, translation and TRAIL: an unexpected intersection. Cytokine Growth Factor Rev. 2008;19:167–72. doi: 10.1016/j.cytogfr.2008.01.007.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Gismondi A, Caldarola S, Lisi G, Juli G, Chellini L, Iadevaia V, Proud CG, Loreni F. Ribosomal stress activates eEF2 K-eEF2 pathway causing translation elongation inhibition and recruitment of terminal oligopyrimidine (TOP) mRNAs on polysomes. Nucleic Acids Res. 2014;42:12668–80. doi: 10.1093/nar/gku996.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Ryazanov AG, Rudkin BB, Spirin AS. Regulation of protein synthesis at the elongation stage. New insights into the control of gene expression in eukaryotes. FEBS Lett. 1991;285:170–5.CrossRefPubMedGoogle Scholar
  103. 103.
    Walden WE, Thach RE. Translational control of gene expression in a normal fibroblast. Characterization of a subclass of mRNAs with unusual kinetic properties. Biochemistry. 1986;25:2033–41.CrossRefPubMedGoogle Scholar
  104. 104.
    Merrick WC, Nyborg J. The protein synthesis elongation cycle. In: Sonenberg N, Hershey J, Mathews M, editors. Translational control of gene expression. New York: CSHL Press; 2000. p. 89–125.Google Scholar
  105. 105.
    Brandis JW, Raff RA. Elevation of protein synthesis is a complex response to fertilisation. Nature. 1979;278:467–9.CrossRefPubMedGoogle Scholar
  106. 106.
    Hille MB, Albers AA. Efficiency of protein synthesis after fertilisation of sea urchin eggs. Nature. 1979;278:469–71.CrossRefPubMedGoogle Scholar
  107. 107.
    Monnier A, Morales J, Cormier P, Boulben S, Belle R, Mulner-Lorillon O. Protein translation during early cell divisions of sea urchin embryos regulated at the level of polypeptide chain elongation and highly sensitive to natural polyamines. Zygote. 2001;9:229–36.CrossRefPubMedGoogle Scholar
  108. 108.
    Le Sourd F, Cormier P, Bach S, Boulben S, Belle R, Mulner-Lorillon O. Cellular coexistence of two high molecular subsets of eEF1B complex. FEBS Lett. 2006;580:2755–60. doi: 10.1016/j.febslet.2006.04.038.CrossRefPubMedGoogle Scholar
  109. 109.
    Monnier A, Belle R, Morales J, Cormier P, Boulben S, Mulner-Lorillon O. Evidence for regulation of protein synthesis at the elongation step by CDK1/cyclin B phosphorylation. Nucleic Acids Res. 2001;29:1453–7.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Sasikumar AN, Perez WB, Kinzy TG. The many roles of the eukaryotic elongation factor 1 complex. Wiley Interdiscip Rev RNA. 2012;3:543–55. doi: 10.1002/wrna.1118.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Boulben S, Monnier A, Le Breton M, Morales J, Cormier P, Belle R, Mulner-Lorillon O. Sea urchin elongation factor 1delta (EF1delta) and evidence for cell cycle-directed localization changes of a sub-fraction of the protein at M phase. Cell Mol Life Sci. 2003;60:2178–88. doi: 10.1007/s00018-003-3201-x.CrossRefPubMedGoogle Scholar
  112. 112.
    Mulner-Lorillon O, Poulhe R, Cormier P, Labbe JC, Doree M, Belle R. Purification of a p47 phosphoprotein from Xenopus laevis oocytes and identification as an in vivo and in vitro p34cdc2 substrate. FEBS Lett. 1989;251:219–24.CrossRefPubMedGoogle Scholar
  113. 113.
    Mulner-Lorillon O, Minella O, Cormier P, Capony JP, Cavadore JC, Morales J, Poulhe R, Belle R. Elongation factor EF-1 delta, a new target for maturation-promoting factor in Xenopus oocytes. J Biol Chem. 1994;269:20201–7.PubMedGoogle Scholar
  114. 114.
    Sivan G, Aviner R, Elroy-Stein O. Mitotic modulation of translation elongation factor 1 leads to hindered tRNA delivery to ribosomes. J Biol Chem. 2011;286:27927–35. doi: 10.1074/jbc.M111.255810.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Kenney JW, Moore CE, Wang X, Proud CG. Eukaryotic elongation factor 2 kinase, an unusual enzyme with multiple roles. Adv Biol Regul. 2014;55:15–27. doi: 10.1016/j.jbior.2014.04.003.CrossRefPubMedGoogle Scholar
  116. 116.
    Belle R, Pluchon PF, Cormier P, Mulner-Lorillon O. Identification of a new isoform of eEF2 whose phosphorylation is required for completion of cell division in sea urchin embryos. Dev Biol. 2011;350:476–83. doi: 10.1016/j.ydbio.2010.12.015.CrossRefPubMedGoogle Scholar
  117. 117.
    Hizli AA, Chi Y, Swanger J, Carter JH, Liao Y, Welcker M, Ryazanov AG, Clurman BE. Phosphorylation of eukaryotic elongation factor 2 (eEF2) by cyclin A-cyclin-dependent kinase 2 regulates its inhibition by eEF2 kinase. Mol Cell Biol. 2013;33:596–604. doi: 10.1128/MCB.01270-12.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Patrick Cormier
    • 1
    • 2
    Email author
  • Héloïse Chassé
    • 1
    • 2
  • Bertrand Cosson
    • 1
    • 2
    • 3
  • Odile Mulner-Lorillon
    • 1
    • 2
  • Julia Morales
    • 1
    • 2
  1. 1.Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS 90074Roscoff CedexFrance
  2. 2.CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de RoscoffRoscoff CedexFrance
  3. 3.Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell FateParisFrance

Personalised recommendations