Skip to main content

Benito Juárez County

  • Chapter
  • First Online:
Book cover Gondwana Industrial Clays

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

  • 224 Accesses

Abstract

In the Benito Juárez County, four sectors will be considered: El Ferrugo and Constante 10-El Cañón Sector; Villa Cacique Sector; Sierra La Juanita Sector and Cuchilla de Las Aguilas-Sierra de La Tinta Sector. Crystalline basement rocks have been altered by weathering processes, resulting, from bottom upwards in: bedrock, saprock, saprolite and, occasionally, in two superimposed paleosols. Argillized basement rocks are covered by a highly resistant conglomerate of the Balcarce Formation. Weathering profiles are analized in detail. Mineralogical composition, by X-ray diffraction of the clays of El Ferrugo and Constante 10 is similar. Also, these deposits are similar to those of La Verónica and Santa María, described in Chap. 2. According to the technological characteristics of the clays of El Ferrugo and Constante 10-El Cañón Sector they are classified as “Fire clays”. In the Villa Cacique Sector the Olavarría Formation, followed by the Loma Negra Formation and overlaid by the Cerro Negro and the Balcarce Formation, are described. The clays of the Cerro Negro Formation are composed of detrital illite and diagenetic clay minerals. Chemical and technological analyses attest to low values of PCE. The clays are classified as varied clays (wide-ranging). At the Sierra La Juanita Sector, the Villa Mónica Formation overlies unconformably the crystalline basement rocks and has been exploited for the ceramic industry. In the last years the Villa Mónica Formation has been redefined as carbonate, mixed, both with quartz megacrystals, and hetherolitic facies; their origin is explained and a paragenetic sequence is proposed. MISS are described in siliciclastic and mixed facies of the Villa Mónica Formation. SEM of the clay deposits and paleoenvironmental conditions of the Villa Mónica Formation are discussed. The Villa Mónica Formation age is considered to be Riphean, on the basis of the type of stromatolites. Technologically, clays from the Villa Mónica Formation are classified as plastic clays. In the Cuchilla de Las Aguilas and Sierra de La Tinta Sector the sedimentary sequence overlying the basement rocks is represented by the Sierras Bayas Group covered by the Las Aguilas Formation and the latter, in turn, by the Balcarce Formation. Alunite provided a Middle Permian age according to K–Ar dating (telogenetic stage). MISS are described in the Las Aguilas Formation. Plastic clays, with refractory and semiplastic varieties, are used in red ceramic and cement industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad AHM, Bhat GM (2006) Petrofacies, provenance and diagenesis of the dhosa sandstone member (Chari Formation) at Ler, Kachchh sub-basin, Western India. J Asian Earth Sci 27:857–872

    Google Scholar 

  • Alló W (2001) Los yacimientos de arcillas illíticas ferruginosas La Siempre Verde y La Placeres de Bárker. Tesis Doctoral (inédito), Universidad Nacional del Sur, Bahía Blanca, p 235

    Google Scholar 

  • Alló W, Domínguez E, Cravero F (1986) Caracterización de la illita del yacimiento La Siempre Verde, Barker, Buenos Aires. Politipos indicadores de un rango termal entre diagénesis profunda y metamorfismo leve. In: Proc 33° Reunión de Mineralogía y Metalogenia, de Brodtkorb MK, Schalamuk, IB (eds.), La Plata, pp 27–35

    Google Scholar 

  • Andreis RR (2003) The Tandilia system province of Buenos Aires, Argentina: its sedimentary successions. In: Domínguez E, Mas GR, Cravero F (eds) 2001, A clay odyssey, Elsevier, Amsterdam, pp 15–22

    Google Scholar 

  • Andreis RR, Zalba PE (1989) Estratigrafía y paleogeografía de las secuencias cuarciticas al oeste de Barker (Buenos Aires, Argentina). In: Proc 1° Jornadas Geológicas Bonaerenses, Tandil, pp 909–930

    Google Scholar 

  • Andreis RR, Zalba PE, Iñíguez Rodriguez AM, Morosi M (1996) Estratigrafía y evolución paleoambiental de la sucesión superior de la Formación Cerro Largo, Sierras Bayas (Buenos Aires, Argentina). In: Proc 6° Reunión Argentina de Sedimentología, pp 293–298

    Google Scholar 

  • Arehart GB (1996) Characteristics and origin of sediment-hosted disseminated gold deposits: a review. Ore Geol Rev 11:383–403

    Article  Google Scholar 

  • Awramik SM (1984) ancient stromatolites and microbial mats. In: Cohen Y, Castenholz RW, Halvorson HO (eds) Microbial mats: stromatolites. Liss AR Publisher, New York, pp 1–22

    Google Scholar 

  • Bouougri E, Porada H (2002) Mat related sedimentary structures in Neoproterozoic peritidal passive margin deposits in the West African Craton (Anti-Atlas). Sed Geol 153:85–106

    Article  Google Scholar 

  • Brewer R (1960) Cutans: their definition, recognition and interpretation. Eur J Soil Sci 11(2):280–292

    Article  Google Scholar 

  • Brewer R (1976) Fabric and mineral analysis of soils. Krieger RE Publishing Co, Huntington, New York, p 480

    Google Scholar 

  • Burley SD, MacQuaker JHS (1992) Authigenic clays, diagenetic sequences and conceptual diagenetic models in contrasting basin-margin and basin-center North Sea Jurassic sandstones and mudstones. In: Houseknecht DW, Pittman ED (eds) Origin, diagenesis and petrophysics of clay minerals in sandstones, SEPM Special Publication, Tulsa, Oklahoma, USA, vol 47. pp 81–110

    Google Scholar 

  • Caudill MR, Driese SG, Mora CI (1996) Preservation of a paleo-vertisol and an estimate of Late Mississippian paleoprecipitation. J Sedim Res 66:58–70

    Google Scholar 

  • Choquette PW, Pray LC (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bull 54:207–250

    Google Scholar 

  • Cingolani CA (2011) The Tandilia system of Argentina as a southern extension of the Río de la Plata craton: an overview. Int J Earth Sci 100:221–242

    Article  Google Scholar 

  • Cingolani CA, Bonhomme MG (1982) Geochronology of La Tinta upper Proterozoic sedimentary rocks Argentina. Precambrian Res 18(1–2):119–132

    Article  Google Scholar 

  • Dai Y, Song H, Shen J (2004) Fossil bacteria in Xuanlong iron ore deposits of Hebei province. Sci China Ser D Earth Sci 47:347–356

    Article  Google Scholar 

  • Dill HG (2001) The geology of aluminium phosphates and sulphates of the alunite group minerals: a review. Earth Sci Rev 53:35–93

    Article  Google Scholar 

  • Domínguez E, Schalamuk I (1999) Recursos minerales de las Sierras Septentrionales, Buenos Aires. In: Zappettini E, (ed) Recursos Minerales de la República Argentina, SEGEMAR, Buenos Aires. Anales, vol 35. pp 183–190

    Google Scholar 

  • Domínguez E, Ullman R (2005) Arcillas e industria cerámica. In: De Barrio R, Etcheverry R, Caballé, M, Llambías E (eds.) Proc 16º Congreso Geológico Argentino, La Plata, Asociación Geológica Argentina, Buenos Aires, pp 397–408

    Google Scholar 

  • Driese SG, Foreman JL (1992) Paleopedology and paleoclimatic implications of late ordovician vertic paleosols, southern Appalachians. J Sed Petrol 62:71–83

    Google Scholar 

  • Driese SG, Mora CI (1993) Physico-chemical environment of pedogenic carbonate formation in devonian vertic paleosols, central Appalachian, USA. Sedimentology 40:199–216

    Article  Google Scholar 

  • Driese SG, Mora CI, Cotter E, Foreman JL (1992) Paleopedology and stable isotope geochemistry of Late Silurian vertic paleosols, bloomsburg formation, central Pennsylvania. J Sed Petrol 62:825–841

    Google Scholar 

  • Druschke P, Jiang G, Anderson TB, Hanson AD (2009) Stromatolites in the late ordovician eureka quartzite: implications for microbial growth and preservation in siliciclastic settings. Sedimentology 56:1275–1291

    Article  Google Scholar 

  • Dunham RL (1962) Classification of carbonate rocks according to depositional texture. Memoir Am Assoc Petrol Geol 1:108–121

    Google Scholar 

  • Flugel E (2004) Microfacies of carbonate rocks, analysis, interpretation and application. Springer, Berlin, p 976

    Google Scholar 

  • Gaboreau S, Beaufort D, Viellard Ph, Patrier P, Bruneton P (2005) Aluminium phosphate-sulphate minerals associated with Proterozoic unconformity-type uranium deposits in the East Alligator River Uranium Field, Northern Territories, Australia. The Can Mineral 43:813–827

    Google Scholar 

  • Garrido L, Zalba PE, Pereira E (1984) Estudio de Yacimientos de Arcilla de El Ferrugo y Constante 10, Provincia de Buenos Aires. II Tecnología. Revista Latinoamericana de Ingeniería, Química y Química Aplicada 14:207–216

    Google Scholar 

  • Gerdes G, Klenke T, Noffke N (2000) Microbial signatures in peritidal siliciclastic sediments: a catalogue. Sedimentology 47:279–308

    Article  Google Scholar 

  • Gerdes G, Krumbein WE, Reineck HE (1991) Biolaminations-ecological versus depositional dynamics. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin, pp 592–607

    Google Scholar 

  • Grigor’ev DP (1965) Ontogeny of minerals: Israel program for scientific translations ltd, S. Marson, Jerusalem, p 250

    Google Scholar 

  • Hemingway IE, Riddler GP (1982) Basin inversion in North Yorkshire. Trans Instn Min Metal 91:175–186

    Google Scholar 

  • Hofmann HJ (1975) Stratiform precambrian stromatolites, Belcher islands, Canada: Relation between silicified microfossils and microstructure. Am J Sci 275:1121–1132

    Article  Google Scholar 

  • Iñíguez MA, Zalba PE (1974) Nuevo nivel de arcilitas en la zona de Cerro Negro, partido de Olavarría, provincia de Buenos Aires. LEMIT Serie 2(264):95–100

    Google Scholar 

  • Iñíguez AM, Del Valle A, Poiré D, Spalletti L, Zalba P (1989) Cuenca Precámbrica-Paleozoico inferior de Tandilia, Provincia de Buenos Aires. In: Chebli G, Spalletti LA (eds) Cuencas sedimentarias argentinas. Instituto Superior de Correlación Geológica, Universidad Nacional de Tucumán, Serie Correlación Geológica, vol 6, pp 245–263

    Google Scholar 

  • Iñíguez AM, Zalba PE, Andreis RR (1990) Mineralogy and Chemistry of Cambrian (?) paleosols, Tandilia System, Buenos Aires Province, Argentina. In: Farmer VC, Tardy Y (eds) Proc 9° international clay conference 1989, Institut Géologie, Strasbourg, France, Mémoire, vol 85. pp 175–184

    Google Scholar 

  • Iñíguez AM, Manassero MJ, Poiré DG, Maggi JH (1996) Génesis y procedencia de sedimentitas cuarzosas del area de Olavarría, Provincia de Buenos Aires, Argentina. In: Proc 6° Reunión Argentina de Sedimentología, Bahía Blanca, pp 61–66

    Google Scholar 

  • Jiang G, Christie-Blick N, Kaufman A, Baner-jees D, Rai V (2003) Carbonate platform growth and cyclicity at a terminal Proterozoic passive margin, Infra Krol Formation and Krol Group, Lesser Himalaya, India. Sedimentology 50:921–952

    Google Scholar 

  • Kah L, Bartley L, Stagner A (2009) Reinterpreting a Proterozoic enigma: conophyton-Jacutophyton stromatolites of the Mesoproterozoic Atar Group, Mauritania. Spec Publ Int Assoc Sedimentol 41:277–296

    Google Scholar 

  • Keller WD (1978) Classification of kaolins exemplified by their texture in scan electron micrographs. Clays Clay Miner 26:1–20

    Article  Google Scholar 

  • Krumbein WE (1994) Biostabilization of sediments. BIS-Verlag, Oldenburg, p 256

    Google Scholar 

  • Larsen G, Chilingar GV (1979) Diagenesis in sediments and sedimentary rocks. Dev Sedimentol 25:579

    Google Scholar 

  • Leanza HA, Hugo C (1987) Descubrimiento de fosforitas sedimentarias en el Proterozoico superior de Tandilia, Buenos Aires Argentina. Rev Asoc Geol Argentina 42(3–4):417–428

    Google Scholar 

  • López K (2006) Estudio geológico, geoquímico, mineralógico y tecnológico de las Arcillas del área de Estancias Araquistain-Viuda de Manson-La Rosalía en Sierras Septentrionales. Tesis Doctoral 902 (inédito). Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, p 245

    Google Scholar 

  • López K, Botto IL, Etcheverry R (2002) Geología y mineralogía de las arcilitas localizadas en las Estancias La Rosalía, San Eduardo y Sierra de los Barrientos, Provincia de Buenos Aires. In: Brodtkorb de MK, Koukharsky M, Leal P (eds.) Proc 6° Congreso de Mineralogía y Metalogenia, Buenos Aires, pp 239–246

    Google Scholar 

  • Ludwig KR (1991) ISOPLOT: A plotting and regression program for radiogenic isotope data, version 2.71: U.S. Geological Survey, Open-File Report, 91–445

    Google Scholar 

  • Manassero MJ, Zalba PE, Morosi M (1986) Neoproterozoic peritidal facies of the Villa Monica Formation, Sierra La Juanita, Tandilia. Rev Asoc Geol Argentina 69(1):28–42

    Google Scholar 

  • Manassero M (1986) Estratigrafía y estructura en el sector oriental de la localidad de Barker, Provincia de Buenos Aires. Rev Asoc Geol Argentina 41(3–4):375–384

    Google Scholar 

  • Manassero MJ, Zalba PE, Morosi M (2012) Neoproterozoic peritidal facies of the Villa Monica Formation, Sierra la Juanita, Tandilia. Rev Asoc Geol Argentina 69(1):28–42

    Google Scholar 

  • Mata S, Bottjer D (2009) The paleoenvironmental distribution of Phanerozoic wrinkle structures. Earth Sci Rev Microb Mats Earth’s Fossil Rec Life Geobiol 96(3):181–195

    Google Scholar 

  • Morton N (1987) Jurassic subsidence history in the Hebrides, NW Scotland. Marine Petroleum Geol 4:226–242

    Article  Google Scholar 

  • Noffke N (2006) Spatial and temporal distribution of microbially induced sedimentary structures: a case study from siliciclastic storm deposits of 2.9 Ga old Witwatesrand Supergroup, South Africa. Precambrian Res 146:35–44

    Article  Google Scholar 

  • Noffke N (2007) Microbially induced sedimentary structures in Archean sandstones: a new window into early life. Gondwana Res 11:336–342

    Article  Google Scholar 

  • Noffke N (2009) The criteria for biogeneicity of microbially induced sedimentary structures (MISS) in Archean, sandy deposits. Earth Sci Rev Microb Mats Earth Fossil Rec Life Geobiol 96:173–180

    Google Scholar 

  • Noffke N, Gerdes G, Klenke T, Krumbein WE (1997) A micrsocopy sedimentary succession of graded sand and microbial mats in modern siliciclastic tidal flats. Sedimentary Geol 10:1–6

    Article  Google Scholar 

  • Noffke N, Gerdes G, Klenke T, Krumbein WE (2001) Microbially induced sedimentary structures—a new category within the classification of primary structures. J Sedimentary Res 71:649–656

    Article  Google Scholar 

  • Noffke N, Hazen R, Nhleko N (2003) Earth’s earliest microbial mats in a siliciclastic marine environment (Mozaan Group, 2.9 Ga, South Africa). Geology 31:673–676

    Article  Google Scholar 

  • Noffke N, Eriksson KA, Hazen RM, Simpson EL (2006) A new window into early archean life: microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34:253–256

    Article  Google Scholar 

  • Pevear DR (1999) Illite and hydrocarbon exploration. Proc Natl Acad Sci U.S.A. PMCID: PMC34286 Colloquium Paper 96(7):3440–3446

    Google Scholar 

  • Poiré DG (1987) Mineralogía y sedimentología de la Formación Sierras Bayas en el núcleo septentrional de las sierras homónimas, Olavarría provincia de Buenos Aires. Tesis Doctoral 494 (inédito). Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, p 271

    Google Scholar 

  • Poiré DG (1993) Estratigrafía del Precámbrico sedimentario de Olavarría Sierras Bayas, provincia de Buenos Aires, Argentina. In: Proc 13° Congreso Geológico Argentino y 3° Congreso de Exploración de Hidrocarburos, Mendoza, vol 2. pp 1–11

    Google Scholar 

  • Poiré DG, Iñíguez AM (1984) Miembro Psamopelitas de la Formación Sierras. Bayas, Partido de Olavarría, Provincia de Buenos Aires. Rev Asoc Geol Argentina 39:276–283

    Google Scholar 

  • Poiré DG, Spalletti LA (2005) La cubierta sedimentaria Precámbrica-Paleozoica inferior del Sistema de Tandilia. In: de Barrio RE, Etcheverry RO, Caballé MF, Llambías E (eds) Geología y Recursos Minerales de la Provincia de Buenos Aires. Proc 16° Congreso Geológico Argentino, Relatorio 4, La Plata, pp 51–68

    Google Scholar 

  • Pratt BR, James NP (1986) The St George Group (Lower Ordovician) of western Newfoundland: tidal flat island model for carbonate sedimentation in shallow epeiric seas. Sedimentology 33:313–343

    Article  Google Scholar 

  • Reineck HE, Singh IB (1986) Sedimentary depositional environments. Springer, Berlin, p 549

    Google Scholar 

  • Riding G (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47:179–214

    Article  Google Scholar 

  • Riding R (2011) The nature of stromatolites: 3500 million years of history and a century of research. Lectures in earth sciences, Springer, vol 131. pp 29–74

    Google Scholar 

  • Schauer C, Venier J (1967) Observaciones geológicas en la zona de Barker, Sierra de la Tinta, Provincia de Buenos Aires. Notas de la Comisión de Investigaciones Científicas, Provincia de Buenos Aires 5(6):1–18

    Google Scholar 

  • Schieber J (1998) Possible indicators of microbial mat deposits in shales and sandstone: examples from the mid-proterozoic belt supergroup, Montana, USA. Sedimentary Geol 120:105–124

    Article  Google Scholar 

  • Schieber J (2007) Oxidation of detrital pyrite as a cause for marcasite formation in marine lag deposits from the Devonian in the eastern US. Deep-Sea Res 54:1312–1326

    Google Scholar 

  • Schieber J, Riciputi L (2004) Pyrite and marcasite coated grains in the ordovician winnipeg formation, Canada: an intertwined record of surface conditions, stratigraphic condensation, geochemical reworking and microbial activity. J Sed Res 75:907–920

    Article  Google Scholar 

  • Scotchman IC (1991a) The geochemistry of concretions from the kimmeridge clay formation of southern and eastern England. Sedimentology 38:79–106

    Google Scholar 

  • Scotchman IC (1991b) Kerogen facies and maturity of the kimmeridge clay formation of Southern and Eastern England. Marine Petroleum Geol 8:278–295

    Google Scholar 

  • Stoffregen R, Alpers Ch (1987) Svanbergite and woodhouseite in hydrothermal ore diposits: implications for apatite destruction during advanced argillic alteration. Canad Mineral 25:201–212

    Google Scholar 

  • Varela R, Dalla Salda L, Cingolani C (1985) La edad Rb-Sr del Granito de Vela, Tandil. In: Proc 1° Jornadas Geológicas Bonaerenses (Tandil) Comisión Investigaciones Científicas, provincia de Buenos Aires, La Plata, Argentina, pp 881–891

    Google Scholar 

  • Von Gosen W, Buggisch W (1989) Tectonic evolution of the Sierras Australes fold and thrust belt (Buenos Aires province/Argentina). Geologisches Rundschau 79(3):797–821

    Google Scholar 

  • Walter MR (1994) Stromatolites: the main geological source of information on the evolution of the early Benthos. In: Bebgstone S (ed) Early life on earth nobel symposium. Columbia University Press, New York, pp 270–286

    Google Scholar 

  • Walter MR, Bauld J, Des Marais DJ, Schopf JW (1992) A general comparison of microbial mats and microbial stromatolites: bridging the gap between the modern and the fossil. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: an interdisciplinary study. Cambridge University Press, New York, pp 335–338

    Google Scholar 

  • Williamson WO (1980) Experiments relevant to the genesis of clay mineral orientation in natural sediments. Clay Miner 15:95–97

    Article  Google Scholar 

  • Worden RH, Burley SD (2003) Sandstone diagenesis: the evolution of sand to stone. In: Burley SD, Worden RH (eds.) Sandstone diagenesis: recent and ancient, Reprint series of the international association of sedimentologists, Blackwell Publishing Ltd., New York, pp 3–44

    Google Scholar 

  • Zalba PE (1979) Clay deposits of Las Aguilas Formation, Barker, Buenos Aires Province, Argentina. Clay Miner 27(6):433–439

    Article  Google Scholar 

  • Zalba PE (1981) Nuevo nivel de arcilitas sobre la caliza en la Cantera Loma Negra, Barker. Rev Asoc Geol Argentina 36(1):99–102

    Google Scholar 

  • Zalba, PE (1982) Scan electron micrographs of clay deposits of Buenos Aires Province, Argentina. International clay conference, Bologna-Pavia, Italy, 1981. Developments in Sedimentology, ol. 35. Elsevier, Ámsterdam, pp 513–528

    Google Scholar 

  • Zalba, PE (1988) Arcillas de las Sierras Septentrionales de Buenos Aires. Publicación Especial Nº 1, CETMIC-CIC, Provincia Buenos Aires, La Plata, p 62

    Google Scholar 

  • Zalba PE, Andreis RR (1998) Basamento cristalino saprolitizado y secuencia sedimentaria suprayacente en San Manuel, Lobería, Sierras Septentrionales de Buenos Aires, Argentina. In: Proc 7° Reunión Argentina de Sedimentología, Salta, pp 143–153

    Google Scholar 

  • Zalba PE, Andreis RR (2001) Stratigraphy, sedimentology and mineralogy of Neoproterozoic clay deposits, Sierras de Tandilia, Province of Buenos Aires, Argentina. Economical importance, In: 12th international clay conference, Pre-simposium field trip, Bahía Blanca, p 80

    Google Scholar 

  • Zalba PE, Andreis RR, Lorenzo F (1982) Consideraciones estratigráficas y paleoambientales de la secuencia basal eopaleozoica en la Cuchilla de Las Aguilas, Barker, Argentina. In: Proc 5° Congreso Latinoamericano de Geología Argentina, vol 2. Buenos Aires, pp 389–409

    Google Scholar 

  • Zalba PE, Andreis RR, Iñíguez AM (1988) Formación Las Aguilas, Sierras Septentrionales de Buenos Aires, nueva propuesta estratigráfica. Rev Asoc Geol Argentina 43(2):198–209

    Google Scholar 

  • Zalba PE, Manassero M, Laverret EM, Beaufort D, Meunier A, Morosi M, Segovia L (2007a) Middle Permian telodiagenetic processes in Neoproterozoic sequences, Tandilia System, Argentina. J Sediment Res 77:525–538

    Google Scholar 

  • Zalba PE, Manassero M, Morosi M (2007b) Meteorización y diagénesis de dolomías estromatolíticas, Formación Villa Mónica (Precámbrico) Sierra de la Juanita, Tandilia. In: Proc 6° Jornadas Geológicas y Geofísicas Bonaerenses. Mar del Plata Abstract, p 46

    Google Scholar 

  • Zalba PE, Manassero M, Morosi ME, Conconi MS (2010a) Preservation of biogenerated mixed facies: a case study from the Neoproterozoic Villa Mónica Formation, Sierra La Juanita, Tandilia, Argentina. J Appl Sci 10(5):363–379

    Google Scholar 

  • Zalba PE, Morosi ME, Manassero M, Conconi MS (2010b) Microscale diagnostic diagenetic features in Neoproterozoic and Ordovician units, Tandilia basin, Argentina: a review. J Appl Sci 10(22):2754–2772

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Eugenia Zalba .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zalba, P.E., Morosi, M.E., Conconi, M.S. (2016). Benito Juárez County. In: Gondwana Industrial Clays. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-39457-2_3

Download citation

Publish with us

Policies and ethics