Fast, Simple and Separable Computation of Betti Numbers on Three-Dimensional Cubical Complexes

  • Aldo Gonzalez-LorenzoEmail author
  • Mateusz Juda
  • Alexandra Bac
  • Jean-Luc Mari
  • Pedro Real
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9667)


Betti numbers are topological invariants that count the number of holes of each dimension in a space. Cubical complexes are a class of CW complex whose cells are cubes of different dimensions such as points, segments, squares, cubes, etc. They are particularly useful for modeling structured data such as binary volumes.

We introduce a fast and simple method for computing the Betti numbers of a three-dimensional cubical complex that takes advantage on its regular structure, which is not possible with other types of CW complexes such as simplicial or polyhedral complexes. This algorithm is also restricted to three-dimensional spaces since it exploits the Euler-Poincaré formula and the Alexander duality in order to avoid any matrix manipulation. The method runs in linear time on a single core CPU. Moreover, the regular cubical structure allows us to obtain an efficient implementation for a multi-core architecture.


Cubical complex Betti numbers 3D Separable Computational topology Homology 


  1. 1.
    Allili, M., Corriveau, D.: Topological analysis of shapes using Morse theory. Comput. Vis. Image Underst. 105(3), 188–199 (2007)CrossRefGoogle Scholar
  2. 2.
    BoostCommunity. Boost Project (2016).
  3. 3.
    Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms. McGraw-Hill Higher Education, New York (2001)zbMATHGoogle Scholar
  4. 4.
    Day, S., Kalies, W.D., Wanner, T.: Verified homology computations for nodal domains. Multiscale Model. Simul. 7(4), 1695–1726 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cecil, J.A., Delfinado, H.E.: An incremental algorithm for Betti numbers of simplicial complexes on the 3-sphere. Comput. Aided Geom. Des. 12(7), 771–784 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dlotko, P., Ghrist, R., Juda, M., Mrozek, M.: Distributed computation of coverage in sensor networks by homological methods. Appl. Algebra Eng. Commun. Comput. 23(1–2), 29–58 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dłotko, P., Specogna, R.: Efficient cohomology computation for electromagnetic modeling. CMES: Comput. Model. Eng. Sci. 60(3), 247–278 (2010)Google Scholar
  8. 8.
    Gross, P.W., Robert Kotiuga, P.: Electromagn. Theory Comput. Cambridge University Press, Cambridge (2004). Cambridge Books OnlineCrossRefGoogle Scholar
  9. 9.
    Harker, S., Mischaikow, K., Mrozek, M., Nanda, V.: Discrete morse theoretic algorithms for computing homology of complexes and maps. Found. Comput. Math. 14(1), 151–184 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Intel. Threading Building Blocks (2016).
  11. 11.
    Juda, M., Mrozek, M., Brendel, P., Wagner, H., et al.: CAPD: : RedHom (2010–2016).
  12. 12.
    Juda, M., Mrozek, M.: CAPD:RedHom v2 - homology software based on reduction algorithms. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 160–166. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Mischaikow, K.: Conley index theory. In: Johnson, R. (ed.) Dynamical Systems. Lecture Notes in Mathematics, vol. 1609, pp. 119–207. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  14. 14.
    Mrozek, M., Zelawski, M., Gryglewski, A., Han, S., Krajniak, A.: Homological methods for extraction and analysis of linear features in multidimensional images. Pattern Recogn. 45(1), 285–298 (2012)CrossRefGoogle Scholar
  15. 15.
    Mrozek, M.: Index pairs algorithms. Found. Comput. Math. 6, 457–493 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, Reading (1984)zbMATHGoogle Scholar
  17. 17.
    Peltier, S., Alayrangues, S., Fuchs, L., Lachaud, J.-O.: Computation of homology groups and generators. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 195–205. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Teramoto, T., Nishiura, Y.: Morphological characterization of the diblock copolymer problem with topological computation. Jpn. J. Ind. Appl. Math. 27(2), 175–190 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wagner, H., Chen, C., Vuçini, E.: Efficient computation of persistent homology for cubical data. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.) Topological Methods in Data Analysis and Visualization II. Mathematics and Visualization, pp. 91–106. Springer, Berlin Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Aldo Gonzalez-Lorenzo
    • 1
    • 2
    Email author
  • Mateusz Juda
    • 3
  • Alexandra Bac
    • 1
  • Jean-Luc Mari
    • 1
  • Pedro Real
    • 2
  1. 1.Aix-Marseille Université, CNRS, LSIS UMR 7296MarseilleFrance
  2. 2.Institute of Mathematics IMUSUniversity of SevilleSevilleSpain
  3. 3.Institute of Computer Science and Computational MathematicsJagiellonian UniversityKrakowPoland

Personalised recommendations