Abstract

Enterprises have a large amount of Information Technology (IT) elements for supporting their business. Enterprise models represent the state of IT and business elements and the relation between them in a certain moment. However, in some cases it is difficult to build models that accurately represent the enterprise because information may vary fast over time, or because the granularity of the model may be inadequate for its purpose. When models that are imprecise and do not represent accurately the enterprise are used to perform analysis, it is necessary to evaluate their suitability and determine whether they can be used or if better models have to be constructed. In this paper, we focus on this problem and propose an approach for evaluating the level of imprecision of enterprise models based on the impact and sensitivity of imprecise information regarding an analysis method.

Keywords

Enterprise modeling Enterprise analysis Models imprecision 

References

  1. 1.
    Jonkers, H., Lankhorst, M., Van Buuren, R., Hoppenbrouwers, S., Bonsangue, M., Van Der Torre, L.: Concepts for modeling enterprise architectures. Int. J. Coop. Inf. Syst. 13(03), 257–287 (2004)CrossRefGoogle Scholar
  2. 2.
    Bézivin, J.: On the unification power of models. Softw. Syst. Model. 4(2), 171–188 (2005)CrossRefGoogle Scholar
  3. 3.
    Ludewig, J.: Models in software engineering–an introduction. Softw. Syst. Model. 2(1), 5–14 (2003)CrossRefGoogle Scholar
  4. 4.
    Lankhorst, M.: Enterprise architecture at work: Modelling, communication and analysis. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Lagerström, R., Franke, U., Johnson, P., Ullberg, J.: A method for creating enterprise architecture metamodels-applied to systems modifiability analysis. Int. J. Comput. Sci. Appl. 6(5), 89–120 (2009)Google Scholar
  6. 6.
    Kurpjuweit, S., Winter, R.: Viewpoint-based Meta Model Engineering. In: Proceedings of the 2nd International Workshop on Enterprise Modelling and Information Systems Architectures, pp. 143–161 (2007)Google Scholar
  7. 7.
    Frank, U.: Multi-perspective enterprise modeling: foundational concepts, prospects and future research challenges. Softw. Syst. Model. 13(3), 941–962 (2014)CrossRefGoogle Scholar
  8. 8.
    Avila, O., Goepp, V., Kiefer, F.: Understanding and classifying information system alignment approaches. J. Comput. Inf. Syst. 50(1), 2–14 (2009)Google Scholar
  9. 9.
    Henricksen, K., Indulska, J.: Modelling and using imperfect context information. In: Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, 2004, pp. 33–37. IEEE (2004)Google Scholar
  10. 10.
    Buckl, S., Matthes, F., Schweda, C.M.: Classifying enterprise architecture analysis approaches. In: Poler, R., van Sinderen, M., Sanchis, R. (eds.) IWEI 2009. LNBIP, vol. 38, pp. 66–79. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Florez, H., Sanchez, M., Villalobos, J.: A catalog of automated analysis methods for enterprise models. SpringerPlus 5, 1–24 (2016)CrossRefGoogle Scholar
  12. 12.
    Holschke, O.: Impact of granularity on adjustment behavior in adaptive reuse of business process models. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 112–127. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Florez, H., Sanchez, M., Villalobos, J.: iArchiMate: a tool for managing imperfection in enterprise models. In: 18th IEEE International Enterprise Distributed Object Computing Conference Workshops and Demonstrations (EDOCW), pp. 201–210. IEEE (2014)Google Scholar
  14. 14.
    Johnson, P., Johansson, E., Sommestad, T., Ullberg, J.: A tool for enterprise architecture analysis. In: 11th IEEE International Enterprise Distributed Object Computing Conference (EDOC 2007), pp. 142–142. IEEE, October 2007Google Scholar
  15. 15.
    Florez, H., Sanchez, M., Villalobos, J.: Extensible model-based approach for supporting automatic enterprise analysis. In: 18th IEEE International Enterprise Distributed Object Computing Conference (EDOC), pp. 32–41 (2014)Google Scholar
  16. 16.
    Morrissey, J.M.: Imprecise information and uncertainty in information systems. ACM Trans. Inf. Syst. (TOIS) 8(2), 159–180 (1990)CrossRefGoogle Scholar
  17. 17.
    Loshin, D.: The practitioner’s guide to data quality improvement. Elsevier, Amsterdam (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hector Florez
    • 1
  • Mario Sánchez
    • 1
  • Jorge Villalobos
    • 1
  1. 1.Department of Systems and Computing EngineeringUniversidad de Los AndesBogotáColombia

Personalised recommendations