Abstract
In the paper we investigate new approaches to quantitative art market research, such as statistical analysis and building of market indices. An ontology has been designed to describe art market data in a unified way. To ensure the quality of information in the knowledge base of the ontology, data enrichment techniques such as named entity recognition (NER) or data linking are also involved. By using techniques from computer vision and machine learning, we predict a style of a painting. This paper comes with a case study example being a detailed validation of our approach.
Keywords
- Art market
- Semantic web
- Linked data
- Machine learning
- Information retrieval
- Alternative investment
- Digital humanities
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
- 2.
Due to the problem of overfitting.
- 3.
WikiArt.org – Encyclopedia of fine arts, http://www.wikiart.org.
- 4.
- 5.
References
Jurevičiene, D., Savičenko, J.: Art investments for portfolio diversification. Intellect. Econ. 6(2), 41–56 (2012)
Bocart, F.Y.R.P., Hafner, C.M.: Volatility of price indices for heterogeneous goods with applications to the fine art market. J. Appl. Econometrics 30(2), 291–312 (2015)
Etro, F., Stepanova, E.: The market for paintings in paris between rococo and romanticism. Kyklos 68(1), 28–50 (2015)
Ginsburgh, V., Mei, J., Moses, M.: The computation of prices indices. In: Handbook of the Economics of Art and Culture, vol. 1, pp. 947–979. Elsevier (2006)
Kräussl, R., van Elsland, N.: Constructing the true art market index: a novel 2-step hedonic approach and its application to the german art market (2008)
Collins, A., Scorcu, A., Zanola, R.: Reconsidering hedonic art price indexes. Econ. Lett. 104(2), 57–60 (2009)
Heath, T., Bizer, C.: Linked data: evolving the web into a global data space, 1st edn. Morgan & Claypool, San Rafael (2011)
Allinson, J.: Openart: open metadata for art research at the tate. Bull. Am. Soc. Inf. Sci. Technol. 38(3), 43–48 (2012)
Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from wikipedia. Semant. Web 6(2), 167–195 (2015)
Filipiak, D., Filipowska, A.: DBpedia in the art market. In: Abramowicz, W., et al. (eds.) BIS 2015 Workshops. LNBIP, vol. 228, pp. 321–331. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26762-3_28
Etzioni, O., Fader, A., Christensen, J., Soderland, S., Mausam, M.: Open information extraction: the second generation. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume, IJCAI 2011, vol. 1, pp. 3–10. AAAI Press (2011)
Filipiak, D., Węcel, K., Filipowska, A.: Semantic annotation to support description of the art market. In: Joint Proceedings of the Posters and Demos Track of 11th International Conference on Semantic Systems - SEMANTiCS2015 and 1st Workshop on Data Science: Methods, Technology and Applications (DSci15) Co-located with the 11th International Conference on Sema, Vienna. CEUR Workshop Proceedings, pp. 51–54 (2015)
Usbeck, R., Röder, M., Ngomo, A.N., Baron, C., Both, A., Brümmer, M., Ceccarelli, D., Cornolti, M., Cherix, D., Eickmann, B., Ferragina, P., Lemke, C., Moro, A., Navigli, R., Piccinno, F., Rizzo, G., Sack, H., Speck, R., Troncy, R., Waitelonis, J., Wesemann, L.: GERBIL: general entity annotator benchmarking framework. In: Proceedings of the 24th International Conference on World Wide Web, WWW 2015, Florence, Italy, 18–22 May 2015, pp. 1133–1143 (2015)
Daiber, J., Jakob, M., Hokamp, C., Mendes, P.N.: Improving efficiency and accuracy in multilingual entity extraction. In: Proceedings of the 9th International Conference on Semantic Systems (I-Semantics) (2013)
Datta, R., Joshi, D., Li, J., Wang, J.Z.: Studying aesthetics in photographic images using a computational approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 288–301. Springer, Heidelberg (2006)
Li, C., Chen, T.: Aesthetic visual quality assessment of paintings. IEEE J. Sel. Top. Sign. Proces. 3(2), 236–252 (2009)
Murray, N., Marchesotti, L., Perronnin, F.: Ava: a large-scale database for aesthetic visual analysis. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2408–2415. IEEE (2012)
Marchesotti, L., Perronnin, F.: Learning beautiful (and ugly) attributes. In: Proceedings of the British Machine Vision Conference. BMVA Press (2013)
Keren, D.: Painter identification using local features and naive bayes. In: Proceedings of the 16th International Conference on Pattern Recognition, vol. 2, pp. 474–477. IEEE (2002)
Shamir, L., Macura, T., Orlov, N., Eckley, D.M., Goldberg, I.G.: Impressionism, expressionism, surrealism: automated recognition of painters and schools of art. ACM Trans. Appl. Percept. (TAP) 7(2), 8 (2010)
Mensink, T., van Gemert, J.: The rijksmuseum challenge: museum-centered visual recognition. In: Proceedings of International Conference on Multimedia Retrieval, p. 451. ACM (2014)
Karayev, S., Trentacoste, M., Han, H., Agarwala, A., Darrell, T., Hertzmann, A., Winnemoeller, H.: Recognizing image style. In: Proceedings of the British Machine Vision Conference. BMVA Press (2014)
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012)
Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: Delving deep into convolutional nets. CoRR abs/1405.3531 (2014)
Cimiano, P., Mädche, A., Staab, S., Völker, J.: Ontology learning. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. International Handbooks on Information Systems, pp. 245–267. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Filipiak, D., Agt-Rickauer, H., Hentschel, C., Filipowska, A., Sack, H. (2016). Quantitative Analysis of Art Market Using Ontologies, Named Entity Recognition and Machine Learning: A Case Study. In: Abramowicz, W., Alt, R., Franczyk, B. (eds) Business Information Systems. BIS 2016. Lecture Notes in Business Information Processing, vol 255. Springer, Cham. https://doi.org/10.1007/978-3-319-39426-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-39426-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-39425-1
Online ISBN: 978-3-319-39426-8
eBook Packages: Business and ManagementBusiness and Management (R0)