Advertisement

Quantitative Analysis of Art Market Using Ontologies, Named Entity Recognition and Machine Learning: A Case Study

  • Dominik Filipiak
  • Henning Agt-Rickauer
  • Christian Hentschel
  • Agata Filipowska
  • Harald Sack
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 255)

Abstract

In the paper we investigate new approaches to quantitative art market research, such as statistical analysis and building of market indices. An ontology has been designed to describe art market data in a unified way. To ensure the quality of information in the knowledge base of the ontology, data enrichment techniques such as named entity recognition (NER) or data linking are also involved. By using techniques from computer vision and machine learning, we predict a style of a painting. This paper comes with a case study example being a detailed validation of our approach.

Keywords

Art market Semantic web Linked data Machine learning Information retrieval Alternative investment Digital humanities 

References

  1. 1.
    Jurevičiene, D., Savičenko, J.: Art investments for portfolio diversification. Intellect. Econ. 6(2), 41–56 (2012)Google Scholar
  2. 2.
    Bocart, F.Y.R.P., Hafner, C.M.: Volatility of price indices for heterogeneous goods with applications to the fine art market. J. Appl. Econometrics 30(2), 291–312 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Etro, F., Stepanova, E.: The market for paintings in paris between rococo and romanticism. Kyklos 68(1), 28–50 (2015)CrossRefGoogle Scholar
  4. 4.
    Ginsburgh, V., Mei, J., Moses, M.: The computation of prices indices. In: Handbook of the Economics of Art and Culture, vol. 1, pp. 947–979. Elsevier (2006)Google Scholar
  5. 5.
    Kräussl, R., van Elsland, N.: Constructing the true art market index: a novel 2-step hedonic approach and its application to the german art market (2008)Google Scholar
  6. 6.
    Collins, A., Scorcu, A., Zanola, R.: Reconsidering hedonic art price indexes. Econ. Lett. 104(2), 57–60 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Heath, T., Bizer, C.: Linked data: evolving the web into a global data space, 1st edn. Morgan & Claypool, San Rafael (2011)Google Scholar
  8. 8.
    Allinson, J.: Openart: open metadata for art research at the tate. Bull. Am. Soc. Inf. Sci. Technol. 38(3), 43–48 (2012)CrossRefGoogle Scholar
  9. 9.
    Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from wikipedia. Semant. Web 6(2), 167–195 (2015)Google Scholar
  10. 10.
    Filipiak, D., Filipowska, A.: DBpedia in the art market. In: Abramowicz, W., et al. (eds.) BIS 2015 Workshops. LNBIP, vol. 228, pp. 321–331. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-26762-3_28 CrossRefGoogle Scholar
  11. 11.
    Etzioni, O., Fader, A., Christensen, J., Soderland, S., Mausam, M.: Open information extraction: the second generation. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume, IJCAI 2011, vol. 1, pp. 3–10. AAAI Press (2011)Google Scholar
  12. 12.
    Filipiak, D., Węcel, K., Filipowska, A.: Semantic annotation to support description of the art market. In: Joint Proceedings of the Posters and Demos Track of 11th International Conference on Semantic Systems - SEMANTiCS2015 and 1st Workshop on Data Science: Methods, Technology and Applications (DSci15) Co-located with the 11th International Conference on Sema, Vienna. CEUR Workshop Proceedings, pp. 51–54 (2015)Google Scholar
  13. 13.
    Usbeck, R., Röder, M., Ngomo, A.N., Baron, C., Both, A., Brümmer, M., Ceccarelli, D., Cornolti, M., Cherix, D., Eickmann, B., Ferragina, P., Lemke, C., Moro, A., Navigli, R., Piccinno, F., Rizzo, G., Sack, H., Speck, R., Troncy, R., Waitelonis, J., Wesemann, L.: GERBIL: general entity annotator benchmarking framework. In: Proceedings of the 24th International Conference on World Wide Web, WWW 2015, Florence, Italy, 18–22 May 2015, pp. 1133–1143 (2015)Google Scholar
  14. 14.
    Daiber, J., Jakob, M., Hokamp, C., Mendes, P.N.: Improving efficiency and accuracy in multilingual entity extraction. In: Proceedings of the 9th International Conference on Semantic Systems (I-Semantics) (2013)Google Scholar
  15. 15.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Studying aesthetics in photographic images using a computational approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 288–301. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Li, C., Chen, T.: Aesthetic visual quality assessment of paintings. IEEE J. Sel. Top. Sign. Proces. 3(2), 236–252 (2009)CrossRefGoogle Scholar
  17. 17.
    Murray, N., Marchesotti, L., Perronnin, F.: Ava: a large-scale database for aesthetic visual analysis. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2408–2415. IEEE (2012)Google Scholar
  18. 18.
    Marchesotti, L., Perronnin, F.: Learning beautiful (and ugly) attributes. In: Proceedings of the British Machine Vision Conference. BMVA Press (2013)Google Scholar
  19. 19.
    Keren, D.: Painter identification using local features and naive bayes. In: Proceedings of the 16th International Conference on Pattern Recognition, vol. 2, pp. 474–477. IEEE (2002)Google Scholar
  20. 20.
    Shamir, L., Macura, T., Orlov, N., Eckley, D.M., Goldberg, I.G.: Impressionism, expressionism, surrealism: automated recognition of painters and schools of art. ACM Trans. Appl. Percept. (TAP) 7(2), 8 (2010)Google Scholar
  21. 21.
    Mensink, T., van Gemert, J.: The rijksmuseum challenge: museum-centered visual recognition. In: Proceedings of International Conference on Multimedia Retrieval, p. 451. ACM (2014)Google Scholar
  22. 22.
    Karayev, S., Trentacoste, M., Han, H., Agarwala, A., Darrell, T., Hertzmann, A., Winnemoeller, H.: Recognizing image style. In: Proceedings of the British Machine Vision Conference. BMVA Press (2014)Google Scholar
  23. 23.
    Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012)Google Scholar
  25. 25.
    Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: Delving deep into convolutional nets. CoRR abs/1405.3531 (2014)Google Scholar
  26. 26.
    Cimiano, P., Mädche, A., Staab, S., Völker, J.: Ontology learning. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. International Handbooks on Information Systems, pp. 245–267. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Dominik Filipiak
    • 1
  • Henning Agt-Rickauer
    • 2
  • Christian Hentschel
    • 2
  • Agata Filipowska
    • 1
  • Harald Sack
    • 2
  1. 1.Department of Information SystemsPoznań University of EconomicsPoznańPoland
  2. 2.Hasso-Plattner-InstitutPotsdamGermany

Personalised recommendations