Flexible On-the-Fly Recommendations from Linked Open Data Repositories

  • Lisa Wenige
  • Johannes Ruhland
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 255)


Recommender systems help consumers to find products online. But because many content-based systems work with insufficient data, recent research has focused on enhancing item feature information with data from the Linked Open Data cloud. Linked Data recommender systems are usually bound to a predefined set of item features and offer limited opportunities to tune the recommendation model to individual needs. The paper addresses this research gap by introducing the prototype SKOS Recommender (SKOSRec), which produces scalable on-the-fly recommendations through SPARQL-like queries from Linked Data repositories. The SKOSRec query language enables users to obtain constraint-based, aggregation-based and cross-domain recommendations, such that results can be adapted to specific business or customer requirements.


Linked Data Recommender systems Query-based recommender systems 


  1. 1.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRefGoogle Scholar
  2. 2.
    Schafer, J., Konstan, J., Riedl, J.: E-commerce recommendation applications. Appl. Data Min. Electron. Commer. 5(1), 115–153 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., Riedl, J.: GroupLens - applying collaborative filtering to Usenet news. Commun. ACM 40(3), 77–87 (1997)CrossRefGoogle Scholar
  4. 4.
    Terveen, L., Hill, W., Amento, B., McDonald, D., Creter, J.: PHOAKS - a system for sharing recommendations. Commun. ACM 40(3), 59–62 (1997)CrossRefGoogle Scholar
  5. 5.
    Shardanand, U., Maes, P.: Social information filtering: algorithms for automating word of mouth. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 210–217 (1995)Google Scholar
  6. 6.
    Balabanovic, M., Shoham, Y.: Fab - content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)CrossRefGoogle Scholar
  7. 7.
    Mobasher, B., Jin, X., Zhou, Y.: Semantically enhanced collaborative filtering on the web. In: Berendt, B., Hotho, A., Mladenič, D., van Someren, M., Spiliopoulou, M., Stumme, G. (eds.) EWMF 2003. LNCS (LNAI), vol. 3209, pp. 57–76. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Schmachterberg, M., Bizer, C., Paulheim, H.: State of the LOD Cloud 2014.
  9. 9.
    Di Noia, T., Mirizzi, R., Ostuni, V., Romito, D.: Exploiting the web of data in model-based recommender systems. In: 6th ACM Conference on Recommender Systems, pp. 253–256 (2012)Google Scholar
  10. 10.
    Di Noia, T., Mirizzi, R., Ostuni, V., Romito, D., Zanker, M.: Linked open data to support content-based recommender systems. In: 8th International Conference on Semantic Systems, pp. 1–8 (2012)Google Scholar
  11. 11.
    Peska, L., Vojtas, P.: Enhancing recommender system with linked open data. In: Larsen, H.L., Martin-Bautista, M.J., Vila, M.A., Andreasen, T., Christiansen, H. (eds.) FQAS 2013. LNCS, vol. 8132, pp. 483–494. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Harispe, S., Ranwez, S., Janaqi, S., Montmain, J.: Semantic measures based on RDF projections: application to content-based recommendation systems. In: Meersman, R., Panetto, H., Dillon, T., Eder, J., Bellahsene, Z., Ritter, N., De Leenheer, P., Dou, D. (eds.) ODBASE 2013. LNCS, vol. 8185, pp. 606–615. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Koutrika, G., Bercovitz, B., Garcia-Molina, H.: FlexRecs - expressing and combining flexible recommendations. In: ACM SIGMOD International Conference on Management of Data, pp. 745–758 (2009)Google Scholar
  14. 14.
    Adomavicius, G., Tuzhilin, A.: Multidimensional recommender systems: a data warehousing approach. In: Fiege, L., Mühl, G., Wilhelm, U.G. (eds.) WELCOM 2001. LNCS, vol. 2232, pp. 180–192. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Adomavicius, G., Tuzhilin, A., Zheng, R.: REQUEST: a query language for customizing recommendations. Inf. Syst. Res. 22(1), 99–117 (2011)CrossRefGoogle Scholar
  16. 16.
    Ayala, A., Przyjaciel-Zablocki, M., Hornung, T., Schätzle, A., Lausen, G.: Extending SPARQL for recommendations. In: Semantic Web Information Management, pp. 1–8 (2014)Google Scholar
  17. 17.
    Kiefer, C., Bernstein, A., Stocker, M.: The fundamentals of iSPARQL: a virtual triple approach for similarity-based semantic web tasks. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 295–309. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Rosati, J., Di Noia, T., Lukasiewicz, T., Leone, R., Maurino, A.: Preference queries with Ceteris Paribus semantics for linked data. In: Debruyne, C., Panetto, H., Meersman, R., Dillon, T., Weichhart, G., An, Y., Ardagna, C.A. (eds.) OTM 2015. LNCS, vol. 9415, pp. 423–442. Springer, Sierre (2015)CrossRefGoogle Scholar
  19. 19.
    Siberski, W., Pan, J.Z., Thaden, U.: Querying the semantic web with preferences. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 612–624. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Felfernig, A., Gordea, S., Jannach, D., Teppan, E., Zanker, M.: A short survey of recommendation technologies in travel and tourism. OEGAI J. 25(7), 17–22 (2007)Google Scholar
  21. 21.
    Marie, N., Gandon, F., Ribiere, M., Rodio, F.: Discovery hub: on-the-fly linked data exploratory search. In: 9th International Conference on Semantic Systems, pp. 17–24 (2013)Google Scholar
  22. 22.
    Khrouf, H., Troncy, R.: Hybrid event recommendation using linked data and user diversity. In: 7th ACM Conference on Recommender Systems, pp. 185–192 (2013)Google Scholar
  23. 23.
    Meymandpour, R., Davis, J.: Recommendations using linked data. In: 5th Ph.D. Workshop on Information and Knowledge, pp. 75–82 (2012)Google Scholar
  24. 24.
    Ostuni, V., Di Noia, T., Di Sciascio, E., Mirizzi, R.: Top-n recommendations from implicit feedback leveraging linked open data. In: 7th ACM Conference on Recommender systems, pp. 85–92 (2013)Google Scholar
  25. 25.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database Syst. TODS 34(3), 16 (2009)Google Scholar
  26. 26.
    SPARQL 1.1 query language.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Chair of Business Information SystemsFriedrich-Schiller-UniversityJenaGermany

Personalised recommendations