Classification and Properties of Biosurfactants

  • Deepansh Sharma
Part of the SpringerBriefs in Food, Health, and Nutrition book series (BRIEFSFOOD)


Microbial surfactants are amphiphilic mixtures compounds derived mainly from microbial cell surfaces extracellularly that decrease the surface tension and interfacial tensions at the surface. The vast diversity of microbial surface active agents makes them a remarkable biomaterial for effective applications in various fields such as food, feeds, agriculture formulations, human health, waste treatment, and environmental problems such as degradation of hydrocarbons. Biosurfactants display various properties such as high biodegradability, nontoxicity, effective critical micelle concentration, excellent surface activity, stability to various environmental factors such as range of pH, extreme temperature, and high-salt concentrations, that are the highly anticipated properties of microbial surfactants valuable for food processing.


Glycolipids Rhamnolipids Lipopeptides CMC Surface tension 


  1. Abdel-Mawgoud, A. M., Lépine, F., & Déziel, E. (2010). Rhamnolipids: Diversity of structures, microbial origins and roles. Applied Microbiology and Biotechnology, 86(5), 1323–1336.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abouseoud, M., Maachi, R., & Amrane, A. (2007). Biosurfactant production from olive oil by Pseudomonas fluorescens. Trends in Applied Microbiology, 340–347, 2007.Google Scholar
  3. Andrä, J., Rademann, J., Howe, J., Koch, M. H., Heine, H., Zähringer, U., & Brandenburg, K. (2006). Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: immune cell stimulation and biophysical characterization. Biological Chemistry, 387(3), 301–310.CrossRefPubMedGoogle Scholar
  4. Asmer, H. J., Lang, S., Wagner, F., & Wray, V. (1988). Microbial production, structure elucidation and bioconversion of sophorose lipids. Journal of the American Oil Chemists Society, 65(9), 1460–1466.CrossRefGoogle Scholar
  5. Asselineau, C., & Asselineau, J. (1978). Trehalose-containing glycolipids. Progress in the Chemistry of Fats and Other Lipids, 16, 59–99.CrossRefPubMedGoogle Scholar
  6. Baltz, R. H., Miao, V., & Wrigley, S. K. (2005). Natural products to drugs: Daptomycin and related lipopeptide antibiotics. Natural Product Reports, 22(6), 717–741.CrossRefPubMedGoogle Scholar
  7. Banat, I. M., Satpute, S. K., Cameotra, S. S., Patil, R., & Nyayanit, N. V. (2014). Cost effective technologies and renewable substrates for biosurfactants’ production. Frontiers in Microbiology, 5, 697.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bhimani, H. D., & Singh, S. P. (2011). Bacterial degradation of AZO dyes and its derivatives (Doctoral dissertation, Ph.D. thesis). Saurashtra University, Rajkot.Google Scholar
  9. Biria, D., Maghsoudi, E., Roostaazad, R., Dadafarin, H., Lotfi, A. S., & Amoozegar, M. A. (2010). Purification and characterization of a novel biosurfactant produced by Bacillus licheniformis MS3. World Journal of Microbiology and Biotechnology, 26(5), 871–878.CrossRefGoogle Scholar
  10. Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42–51.CrossRefPubMedGoogle Scholar
  11. Brzozowski, B., Bednarski, W., & Golek, P. (2011). The adhesive capability of two Lactobacillus strains and physicochemical properties of their synthesized biosurfactants. Food Technology and Biotechnology, 49(2), 177.Google Scholar
  12. Busscher, H. J., Van Hoogmoed, C. G., Geertsema-Doornbusch, G. I., Van der Kuijl-Booij, M., & Van der Mei, H. C. (1997). Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp. on silicone rubber. Applied and Environmental Microbiology, 63(10), 3810–3817.PubMedPubMedCentralGoogle Scholar
  13. Bustos, G., De la Torre, N., Moldes, A. B., Cruz, J. M., & Domínguez, J. M. (2007). Revalorization of hemicellulosic trimming vine shoots hydrolyzates trough continuous production of lactic acid and biosurfactants by L. pentosus. Journal of Food Engineering, 78(2), 405–412.CrossRefGoogle Scholar
  14. Cawoy, H., Mariutto, M., Henry, G., Fisher, C., Vasilyeva, N., Thonart, P., & Ongena, M. (2014). Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Molecular Plant-Microbe Interactions, 27(2), 87–100.CrossRefPubMedGoogle Scholar
  15. Ceresa, C., Tessarolo, F., Caola, I., Nollo, G., Cavallo, M., Rinaldi, M., & Fracchia, L. (2015). Inhibition of Candida albicans adhesion on medical‐grade silicone by a Lactobacillus‐derived biosurfactant. Journal of Applied Microbiology, 118(5), 1116–1125.CrossRefPubMedGoogle Scholar
  16. Cirigliano, M. C., & Carman, G. M. (1984). Isolation of a bioemulsifier from Candida lipolytica. Applied and Environmental Microbiology, 48(4), 747–750.PubMedPubMedCentralGoogle Scholar
  17. Cirigliano, M. C., & Carman, G. M. (1985). Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Applied and Environmental Microbiology, 50(4), 846–850.PubMedPubMedCentralGoogle Scholar
  18. Cooper, D. G., & Paddock, D. A. (1984). Production of a biosurfactant from Torulopsis bombicola. Applied and Environmental Microbiology, 47(1), 173–176.PubMedPubMedCentralGoogle Scholar
  19. Das, K., & Mukherjee, A. K. (2007). Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: some industrial applications of biosurfactants. Process Biochemistry, 42(8), 1191–1199.CrossRefGoogle Scholar
  20. Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61(1), 47–64.PubMedPubMedCentralGoogle Scholar
  21. Déziel, E., Lépine, F., Milot, S., & Villemur, R. (2000). Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochimica et Biophysica Acta, 1485(2), 145–152.CrossRefPubMedGoogle Scholar
  22. Dubeau, D., Déziel, E., Woods, D. E., & Lépine, F. (2009). Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiology, 9(1), 263.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Eisenstein, B. I. (2004). Lipopeptides, focusing on daptomycin, for the treatment of gram-positive infections. Expert Opinion on Investigational Drugs, 13(9), 1159–1169.CrossRefPubMedGoogle Scholar
  24. Fracchia, L., Cavallo, M., Allegrone, G., & Martinotti, M. G. (2010). A Lactobacillus-derived biosurfactant inhibits biofilm formation of human pathogenic Candida albicans biofilm producers. Applied Microbiology and Biotechnology, 2, 827–837.Google Scholar
  25. Franzetti, A., Gandolfi, I., Bestetti, G., Smyth, T. J., & Banat, I. M. (2010). Production and applications of trehalose lipid biosurfactants. European Journal of Lipid Science and Technology, 112(6), 617–627.CrossRefGoogle Scholar
  26. George, S., & Jayachandran, K. (2009). Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source. Applied Biochemistry and Biotechnology, 158(3), 694–705.CrossRefPubMedGoogle Scholar
  27. Gomaa, E. Z. (2013). Antimicrobial activity of a biosurfactant produced by Bacillus licheniformis strain M104 grown on whey. Brazilian Archives of Biology and Technology, 56(2), 259–268.CrossRefGoogle Scholar
  28. Gorin, P. A. J., Spencer, J. F. T., & Tulloch, A. P. (1961). Hydroxy fatty acid glycosides of sophorose from Torulopsis magnoliae. Canadian Journal of Chemistry, 39(4), 846–855.CrossRefGoogle Scholar
  29. Gudiña, E. J., Rocha, V., Teixeira, J. A., & Rodrigues, L. R. (2010). Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Letters in Applied Microbiology, 50(4), 419–424.CrossRefPubMedGoogle Scholar
  30. Gudiña, E. J., Rodrigues, A. I., Alves, E., Domingues, M. R., Teixeira, J. A., & Rodrigues, L. R. (2015). Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Bioresource Technology, 177, 87–93.CrossRefPubMedGoogle Scholar
  31. Habibi, A. R. (2014). Molecular analysis of Exotoxin A Associated with Antimicrobial Resistance of Pseudomonas aeruginosa Strains Isolated from Patients in Tehran Hospitals. Iran J Med Microbiol, 8(4), 1–9.Google Scholar
  32. Hajfarajollah, H., Mokhtarani, B., & Noghabi, K. A. (2014). Newly antibacterial and antiadhesive lipopeptide biosurfactant secreted by a probiotic strain, Propionibacterium freudenreichii. Applied Biochemistry and Biotechnology, 174(8), 2725–2740.CrossRefPubMedGoogle Scholar
  33. Heinemann, C., van Hylckama Vlieg, J. E., Janssen, D. B., Busscher, H. J., van der Mei, H. C., & Reid, G. (2000). Purification and characterization of a surface-binding protein from Lactobacillus fermentum RC-14 that inhibits adhesion of Enterococcus faecalis 1131. FEMS Microbiology Letters, 190(1), 177–180.CrossRefPubMedGoogle Scholar
  34. Hörmann, B., Müller, M. M., Syldatk, C., & Hausmann, R. (2010). Rhamnolipid production by Burkholderia plantarii DSM 9509T. European Journal of Lipid Science and Technology, 112(6), 674–680.CrossRefGoogle Scholar
  35. Hošková, M., Schreiberová, O., Ježdík, R., Chudoba, J., Masák, J., Sigler, K., & Řezanka, T. (2013). Characterization of rhamnolipids produced by non-pathogenic Acinetobacter and Enterobacter bacteria. Bioresource Technology, 130, 510–516.CrossRefPubMedGoogle Scholar
  36. Inoue, S., & Ito, S. (1982). Sophorolipids from Torulopsis bombicola as microbial surfactants in alkane fermentations. Biotechnology Letters, 4(1), 3–8.CrossRefGoogle Scholar
  37. Janek, T., Łukaszewicz, M., & Krasowska, A. (2013). Identification and characterization of biosurfactants produced by the Arctic bacterium Pseudomonas putida BD2. Colloids and Surfaces B: Biointerfaces, 110, 379–386.CrossRefPubMedGoogle Scholar
  38. Jarvis, F. G., & Johnson, M. J. (1949). A glycol-lipid produced by Pseudomonas aeruginosa. Journal of the American Chemical Society, 71, 4124–4126.CrossRefGoogle Scholar
  39. Kachholz, T. R. A. U. D. E. L., & Schlingmann, M. (1987). Possible food and agricultural applications of microbial surfactants: An assessment. Biosurfactants and Biotechnology, 183–210.Google Scholar
  40. Käppeli, O., & Finnerty, W. R. (1979). Partition of alkane by an extracellular vesicle derived from hexadecanegrown Acinetobacter. Journal of Bacteriology, 140(2), 707–712.PubMedPubMedCentralGoogle Scholar
  41. Karanth, N. G. K., Deo, P. G., & Veenanadig, N. K. (1999). Microbial production of biosurfactants and their importance. Current Science, 77(1), 116–126.Google Scholar
  42. Kermanshahi, R. K., & Peymanfar, S. (2012). Isolation and identification of lactobacilli from cheese, yoghurt and silage by 16S rDNA gene and study of bacteriocin and biosurfactant production. Jundishapur Journal of Microbiology, 5(4), 528–532.CrossRefGoogle Scholar
  43. Kügler, J. H., Le Roes-Hill, M., Syldatk, C., & Hausmann, R. (2015). Surfactants tailored by the class Actinobacteria. Frontiers in Microbiology, 6, 212.PubMedPubMedCentralGoogle Scholar
  44. Lang, S., & Wagner, F. (1987). Structure and properties of biosurfactants. In N. Kosaric, N. C. C. Gray, & W. L. Cairns (Eds.), Biosurfactants and Biotechnology (pp. 21–45). New York/Basel: Marcel Dekker.Google Scholar
  45. Madhu, A. N., & Prapulla, S. G. (2014). Evaluation and functional characterization of a biosurfactant produced by Lactobacillus plantarum CFR 2194. Applied Biochemistry and Biotechnology, 172(4), 1777–1789.CrossRefPubMedGoogle Scholar
  46. Maneerat, S. (2005). Biosurfactants from marine microorganisms. Songklanakarin Journal of Science and Technology, 27, 1263–1272.Google Scholar
  47. Meylheuc, T., Renault, M., & Bellon-Fontaine, M. N. (2006). Adsorption of a biosurfactant on surfaces to enhance the disinfection of surfaces contaminated with Listeria monocytogenes. International Journal of Food Microbiology, 109(1), 71–78.CrossRefPubMedGoogle Scholar
  48. Mulligan, C. N. (2005). Environmental applications for biosurfactants. Environmental Pollution, 133(2), 183–198.CrossRefPubMedGoogle Scholar
  49. Muthusamy, K., Gopalakrishnan, S., Ravi, T. K., & Sivachidambaram, P. (2008). Biosurfactants: Properties, commercial production and application. Current Science, 00113891, 94(6).Google Scholar
  50. Neu, T. R., & Poralla, K. (1990). Emulsifying agents from bacteria isolated during screening for cells with hydrophobic surfaces. Applied Microbiology and Biotechnology, 32(5), 521–525.Google Scholar
  51. Nitschke, M., & Costa, S. G. V. A. O. (2007). Biosurfactants in food industry. Trends in Food Science and Technology, 18(5), 252–259.CrossRefGoogle Scholar
  52. Nitschke, M., & Pastore, G. M. (2006). Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresource Technology, 97(2), 336–341.CrossRefPubMedGoogle Scholar
  53. Nunez, A., Ashby, R., Foglia, T. A., & Solaiman, D. K. Y. (2001). Analysis and characterization of sophorolipids by liquid chromatography with atmospheric pressure chemical ionization. Chromatographia, 53(11-12), 673–677.CrossRefGoogle Scholar
  54. Oelschlaeger, T. A. (2010). Mechanisms of probiotic actions—A review. International Journal of Medical Microbiology, 300(1), 57–62.CrossRefPubMedGoogle Scholar
  55. Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3), 115–125.CrossRefPubMedGoogle Scholar
  56. Perfumo, A., Smyth, T. J. P., Marchant, R., & Banat, I. M. (2010). Production and roles of biosurfactants and bioemulsifiers in accessing hydrophobic substrates (In Handbook of hydrocarbon and lipid microbiology(pp. 1501-1512)). Berlin Heidelberg: Springer.CrossRefGoogle Scholar
  57. Peypoux, F., Bonmatin, J. M., & Wallach, J. (1999). Recent trends in the biochemistry of surfactin. Applied Microbiology and Biotechnology, 51(5), 553–563.CrossRefPubMedGoogle Scholar
  58. Rahman, P. K., & Gakpe, E. (2008b). Production, characterisation and applications of biosurfactants-Review. Biotechnology.Google Scholar
  59. Řezanka, T., Siristova, L., & Sigler, K. (2011). Rhamnolipid-producing thermophilic bacteria of species of Thermus and Meiothermus. Extremophiles, 15(6), 697–709.CrossRefPubMedGoogle Scholar
  60. Rivera, O. M. P., Moldes, A. B., Torrado, A. M., & Domínguez, J. M. (2007). Lactic acid and biosurfactants production from hydrolyzed distilled grape marc. Process Biochemistry, 42(6), 1010–1020.CrossRefGoogle Scholar
  61. Robert, M., Mercade, M. E., Bosch, M. P., Parra, J. L., Espuny, M. J., Manresa, M. A., & Guinea, J. (1989). Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1. Biotechnology Letters, 11(12), 871–874.CrossRefGoogle Scholar
  62. Rodrigues, L., Van der Mei, H., Teixeira, J. A., & Oliveira, R. (2004). Biosurfactant from Lactococcus lactis 53 inhibits microbial adhesion on silicone rubber. Applied Microbiology and Biotechnology, 66(3), 306–311.CrossRefPubMedGoogle Scholar
  63. Rodrigues, L., Banat, I. M., Teixeira, J., & Oliveira, R. (2006). Biosurfactants: Potential applications in medicine. Journal of Antimicrobial Chemotherapy, 57(4), 609–618.CrossRefPubMedGoogle Scholar
  64. Rodríguez, N., Salgado, J. M., Cortés, S., & Domínguez, J. M. (2010). Alternatives for biosurfactants and bacteriocins extraction from Lactococcus lactis cultures produced under different pH conditions. Letters in Applied Microbiology, 51(2), 226–233.PubMedGoogle Scholar
  65. Rodríguez-Pazo, N., Vázquez-Araújo, L., Pérez-Rodríguez, N., Cortés-Diéguez, S., & Domínguez, J. M. (2013). Cell-free supernatants obtained from fermentation of cheese whey hydrolyzates and phenylpyruvic acid by Lactobacillus plantarum as a source of antimicrobial compounds, bacteriocins, and natural aromas. Applied Biochemistry and Biotechnology, 171(4), 1042–1060.CrossRefPubMedGoogle Scholar
  66. Rosenberg, E., Rubinovitz, C., Gottlieb, A., Rosenhak, S., & Ron, E. Z. (1988). Production of biodispersan by Acinetobacter calcoaceticus A2. Applied and Environmental Microbiology, 54(2), 317–322.PubMedPubMedCentralGoogle Scholar
  67. Rosenberg, E., & Ron, E. Z. (1999). High-and low-molecular-mass microbial surfactants. Applied Microbiology and Biotechnology, 52(2), 154–162.CrossRefPubMedGoogle Scholar
  68. Saravanakumari, P., & Mani, K. (2010). Structural characterization of a novel xylolipid biosurfactant from Lactococcus lactis and analysis of antibacterial activity against multi-drug resistant pathogens. Bioresource Technology, 101(22), 8851–8854.CrossRefPubMedGoogle Scholar
  69. Saharan, B. S., Sahu, R. K., & Sharma, D. (2011). A review on biosurfactants: Fermentation, current developments and perspectives. Genetic Engineering and Biotechnology Journal, 2011(1), 1–14.Google Scholar
  70. Salehi, R., Savabi, O., & Kazemi, M. (2014). Effects of Lactobacillus reuteri-derived biosurfactant on the gene expression profile of essential adhesion genes (gtfB, gtfC, and ftf) of Streptococcus mutans. Advanced Biomedical Research, 3, 169.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Sambanthamoorthy, K., Luo, C., Pattabiraman, N., Feng, X., Koestler, B., Waters, C. M., & Palys, T. J. (2014). Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development. Biofouling, 30(1), 17–28.CrossRefPubMedGoogle Scholar
  72. Sharma, D., & Malik, A. (2012). Incidence and prevalence of antimicrobial resistant Vibrio cholerae from dairy farms. African Journal of Microbiology Research, 6(25), 5331–5334.Google Scholar
  73. Sharma, D., & Saharan, B. S. (2016). Functional characterization of biomedical potential of biosurfactant produced by Lactobacillus helveticus. Biotechnology Reports, 11, 27–35.CrossRefGoogle Scholar
  74. Sharma, D., Saharan, B. S., Chauhan, N., Bansal, A., & Procha, S. (2014). Production and structural characterization of Lactobacillus helveticus derived biosurfactant. The Scientific World Journal.Google Scholar
  75. Sharma, D., Saharan, B. S., Chauhan, N., Procha, S., & Lal, S. (2015). Isolation and functional characterization of novel biosurfactant produced by Enterococcus faecium. Springer Plus, 4(1), 1–14.CrossRefGoogle Scholar
  76. Sharma, D., Sharma, P. K., & Malik, A. (2011a). Prevalence and antimicrobial susceptibility of drug resistant Staphylococcus aureus in raw milk of dairy cattle. International Research Journal of Microbiology, 2(11), 466–470.Google Scholar
  77. Sharma, Deepansh, Baljeet Singh Saharan, & Shailly Kapil..(2016) .Biosurfactants of Lactic Acid Bacteria.Google Scholar
  78. Sharma, D., & Singh Saharan, B. (2014). Simultaneous production of biosurfactants and bacteriocins by probiotic Lactobacillus casei MRTL3. International Journal of Microbiology, 2014, 698713.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Sharma, V. K., Siskova, K. M., Zboril, R., & Gardea-Torresdey, J. L. (2014). Organic-coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Advance in Colloid and Interface Science, 204, 15–34.CrossRefGoogle Scholar
  80. Singh, V., Singh, K., Amdekar, S., Singh, D. D., Tripathi, P., Sharma, G. L., & Yadav, H. (2009). Innate and specific gut-associated immunity and microbial interference. FEMS Immunology and Medical Microbiology, 55(1), 6–12.CrossRefPubMedGoogle Scholar
  81. Singh, A., Van Hamme, J. D., & Ward, O. P. (2007). Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnology Advances, 25(1), 99–121.CrossRefPubMedGoogle Scholar
  82. Tahmourespour, A., Salehi, R., & Kermanshahi, R. K. (2011). Lactobacillus acidophilus-derived biosurfactant effect on gtfB and gtfC expression level in Streptococcus mutans biofilm cells. Brazilian Journal of Microbiology, 42(1), 330–339.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Thavasi, R., Jayalakshmi, S., & Banat, I. M. (2011). Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresource Technology, 102(3), 3366–3372.CrossRefPubMedGoogle Scholar
  84. Tyagi, P., Chandra, S., Saraswat, B. S., & Sharma, D. (2015). Design, spectral characterization, DFT and biological studies of transition metal complexes of Schiff base derived from 2-aminobenzamide, pyrrole and furan aldehyde. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 143, 1–11.CrossRefGoogle Scholar
  85. Van Hoogmoed, C. G., van der Kuijl-Booij, M. V., Van der Mei, H. C., & Busscher, H. J. (2000b). Inhibition of Streptococcus mutans NS Adhesion to Glass with and without a Salivary Conditioning Film by Biosurfactant-Releasing Streptococcus mitisStrains. Applied and Environmental Microbiology, 66(2), 659–663.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Vecino, X., Devesa-Rey, R., Cruz, J. M., & Moldes, A. B. (2013). Evaluation of biosurfactant obtained from Lactobacillus pentosus as foaming agent in froth flotation. Journal of Environmental Management, 128, 655–660.CrossRefPubMedGoogle Scholar
  87. Vecino, X., Devesa-Rey, R., Cruz, J. M., & Moldes, A. B. (2015b). Study of the physical properties of calcium alginate hydrogel beads containing vineyard pruning waste for dye removal. Carbohydr Polymers, 115, 129–138.CrossRefGoogle Scholar
  88. Velraeds, M. M., Van de Belt-Gritter, B., Van der Mei, H. C., Reid, G., & Busscher, H. J. (1998). Interference in initial adhesion of uropathogenic bacteria and yeasts to silicone rubber by a Lactobacillus acidophilus biosurfactant. Journal of Medical Microbiology, 47(12), 1081–1085.CrossRefPubMedGoogle Scholar
  89. Velraeds, M. M., Van der Mei, H. C., Reid, G., & Busscher, H. J. (1996b). Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates. Applied and Environmental Microbiology, 62(6), 1958–1963.PubMedPubMedCentralGoogle Scholar
  90. Walencka, E., Różalska, S., Sadowska, B., & Różalska, B. (2008). The influence of Lactobacillus acidophilus-derived surfactants on staphylococcal adhesion and biofilm formation. Folia microbiologica, 53(1), 61–66.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Deepansh Sharma
    • 1
  1. 1.School of Biotechnology and BiosciencesLovely Professional UniversityPhagwaraIndia

Personalised recommendations